


Related learning recommendations: python tutorial
In the previous article, we introduced the use of some commonly used indexes in DataFrame data structures, such as iloc, loc, logical indexes, etc. In today's article, let's take a look at some basic operations of DataFrame.
Data alignment
We can calculate the sum of two DataFrames, pandas will automatically Two DataFrames perform data alignment. If the data does not match, it will be set to Nan (not a number).
First we create two DataFrames:
import numpy as npimport pandas as pddf1 = pd.DataFrame(np.arange(9).reshape((3, 3)), columns=list('abc'), index=['1', '2', '3'])df2 = pd.DataFrame(np.arange(12).reshape((4, 3)), columns=list('abd'), index=['2', '3', '4', '5'])复制代码
The result is consistent with what we imagined. In fact, it is just create the DataFrame through the numpy array, and then specify the index and columns. , this should be considered a very basic usage.

Then we add the two DataFrames and we will get:

We find that pandas adds the two DataFrames After merging, any position that does not appear in both DataFrames will be set to Nan. This actually makes sense. In fact, not just addition, we can calculate the four arithmetic operations of addition, subtraction, multiplication and division of two DataFrames. If you calculate the division of two DataFrames, in addition to the data that does not correspond to it will be set to Nan, The act of dividing by zero will also lead to the occurrence of outliers (may not necessarily be Nan, but is inf).
fill_value
If we are going to operate on two DataFrames, then of course we don’t want null values to appear . At this time, we need to fill in the null values. If we directly use operators to perform operations, we cannot pass parameters for filling. At this time, we need to use the arithmetic method provided for us in the DataFrame.
There are several commonly used operators in DataFrame:

We all understand add, sub, and p very well, so what do the radd and rsub methods here mean? Why is there an r in front?
It seems confusing, but to put it bluntly, radd is used to flip parameters. For example, if we want to get the reciprocal of all elements in the DataFrame, we can write it as 1/df. Since 1 itself is not a DataFrame, we cannot use 1 to call methods in the DataFrame, and we cannot pass parameters. In order to solve this situation, wecan write 1/df as df.rp(1), so we can pass parameters in it.

Since division by zero occurs during the division calculation, we get an inf, which represents infinity.
We can pass in a fill_value parameter in the add and p methods. This parameter can fill in the case of missing values on one side before calculation. That is to say, positions that are missing in only one DataFrame will be replaced with the value we specify. If it is missing in both DataFrames, it will still be Nan.

We can compare the results and find that the positions of (1, d), (4, c) and (5, c) after addition are all Nan , because these positions in the two DataFrames df1 and df2 are empty values, so they are not filled.
#fill_value This parameter appears in many APIs, such as reindex, etc. The usage is the same. We can pay attention to it when checking the API documentation.
So what should we do with this kind of empty value that still appears after filling? Can I only manually find these locations and fill them in? Of course it is unrealistic. Pandas also provides us with an API that specifically solves null values.
null value api
#Before filling the null value, the first thing we have to do is find the null value. To solve this problem, we have the isna API, which will return a bool DataFrame. Each position in the DataFrame indicates whether the corresponding position of the original DataFrame is a null value.

dropna
Of course, just finding out whether it is a null value is definitely not enough, we Sometimes we hope that null values will not appear. At this time, we can choose drop the null values. For this situation, we can use the dropna method in DataFrame.

We found that after using dropna, rows with null values were discarded. Only rows without null values are retained. Sometimes we want to discard the columns instead of rows. At this time, we can control it by passing in the axis parameter.

In this way, what we get is a column that does not contain null values. In addition to controlling the rows and columns, we can also control the strictness of executing drop . We can judge by the how parameter. How supports two values to be passed in, one is 'all' and the other is 'any'. All means that it will be discarded only when a certain row or column is all null values, and corresponding to any, it will be discarded as long as null values appear. If it is not filled in by default, it is considered to be any. Under normal circumstances, we do not use this parameter, and it is enough to have an impression.
fillna
In addition to dropping data containing null values, pandas can also be used Fill empty values, in fact this is also the most commonly used method.
We can simply pass in a specific value for filling:

fillna will return a new DataFrame, All Nan values will be replaced with the values we specify. If we do not want it to return a new DataFrame, but directly modify the original data, we can use the inplace parameter to indicate that this is an inplace operation, then pandas will modify the original DataFrame.
df3.fillna(3, inplace=True)复制代码
除了填充具体的值以外,我们也可以和一些计算结合起来算出来应该填充的值。比如说我们可以计算出某一列的均值、最大值、最小值等各种计算来填充。fillna这个函数不仅可以使用在DataFrame上,也可以使用在Series上,所以我们可以针对DataFrame中的某一列或者是某些列进行填充:

除了可以计算出均值、最大最小值等各种值来进行填充之外,还可以指定使用缺失值的前一行或者是后一行的值来填充。实现这个功能需要用到method这个参数,它有两个接收值,ffill表示用前一行的值来进行填充,bfill表示使用后一行的值填充。

我们可以看到,当我们使用ffill填充的时候,对于第一行的数据来说由于它没有前一行了,所以它的Nan会被保留。同样当我们使用bfill的时候,最后一行也无法填充。
总结
今天的文章当中我们主要介绍了DataFrame的一些基本运算,比如最基础的四则运算。在进行四则运算的时候由于DataFrame之间可能存在行列索引不能对齐的情况,这样计算得到的结果会出现空值,所以我们需要对空值进行处理。我们可以在进行计算的时候通过传入fill_value进行填充,也可以在计算之后对结果进行fillna填充。
在实际的运用当中,我们一般很少会直接对两个DataFrame进行加减运算,但是DataFrame中出现空置是家常便饭的事情。因此对于空值的填充和处理非常重要,可以说是学习中的重点,大家千万注意。
想了解更多编程学习,敬请关注php培训栏目!
The above is the detailed content of Pandas Tips to Efficiently Obtain Data through Indexing in DataFrame. For more information, please follow other related articles on the PHP Chinese website!

python可以通过使用pip、使用conda、从源代码、使用IDE集成的包管理工具来安装pandas。详细介绍:1、使用pip,在终端或命令提示符中运行pip install pandas命令即可安装pandas;2、使用conda,在终端或命令提示符中运行conda install pandas命令即可安装pandas;3、从源代码安装等等。

知乎上有个热门提问,日常工作中Python+Pandas是否能代替Excel+VBA?我的建议是,两者是互补关系,不存在谁替代谁。复杂数据分析挖掘用Python+Pandas,日常简单数据处理用Excel+VBA。从数据处理分析能力来看,Python+Pandas肯定是能取代Excel+VBA的,而且要远远比后者强大。但从便利性、传播性、市场认可度来看,Excel+VBA在职场工作上还是无法取代的。因为Excel符合绝大多数人的使用习惯,使用成本更低。就像Photoshop能修出更专业的照片,为

CSV(逗号分隔值)文件广泛用于以简单格式存储和交换数据。在许多数据处理任务中,需要基于特定列合并两个或多个CSV文件。幸运的是,这可以使用Python中的Pandas库轻松实现。在本文中,我们将学习如何使用Python中的Pandas按特定列合并两个CSV文件。什么是Pandas库?Pandas是一个用于Python信息控制和检查的开源库。它提供了用于处理结构化数据(例如表格、时间序列和多维数据)以及高性能数据结构的工具。Pandas广泛应用于金融、数据科学、机器学习和其他需要数据操作的领域。

使用Pandas和Python从时间序列数据中提取有意义的特征,包括移动平均,自相关和傅里叶变换。前言时间序列分析是理解和预测各个行业(如金融、经济、医疗保健等)趋势的强大工具。特征提取是这一过程中的关键步骤,它涉及将原始数据转换为有意义的特征,可用于训练模型进行预测和分析。在本文中,我们将探索使用Python和Pandas的时间序列特征提取技术。在深入研究特征提取之前,让我们简要回顾一下时间序列数据。时间序列数据是按时间顺序索引的数据点序列。时间序列数据的例子包括股票价格、温度测量和交通数据。

pandas写入excel的方法有:1、安装所需的库;2、读取数据集;3、写入Excel文件;4、指定工作表名称;5、格式化输出;6、自定义样式。Pandas是一个流行的Python数据分析库,提供了许多强大的数据清洗和分析功能,要将Pandas数据写入Excel文件,可以使用Pandas提供的“to_excel()”方法。

pandas读取txt文件的步骤:1、安装Pandas库;2、使用“read_csv”函数读取txt文件,并指定文件路径和文件分隔符;3、Pandas将数据读取为一个名为DataFrame的对象;4、如果第一行包含列名,则可以通过将header参数设置为0来指定,如果没有,则设置为None;5、如果txt文件中包含缺失值或空值,可以使用“na_values”指定这些缺失值。

读取CSV文件的方法有使用read_csv()函数、指定分隔符、指定列名、跳过行、缺失值处理、自定义数据类型等。详细介绍:1、read_csv()函数是Pandas中最常用的读取CSV文件的方法。它可以从本地文件系统或远程URL加载CSV数据,并返回一个DataFrame对象;2、指定分隔符,默认情况下,read_csv()函数将使用逗号作为CSV文件的分隔符等等。

使用Python做数据处理的数据科学家或数据从业者,对数据科学包pandas并不陌生,也不乏像云朵君一样的pandas重度使用者,项目开始写的第一行代码,大多是importpandasaspd。pandas做数据处理可以说是yyds!而他的缺点也是非常明显,pandas只能单机处理,它不能随数据量线性伸缩。例如,如果pandas试图读取的数据集大于一台机器的可用内存,则会因内存不足而失败。另外pandas在处理大型数据方面非常慢,虽然有像Dask或Vaex等其他库来优化提升数


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Linux new version
SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

WebStorm Mac version
Useful JavaScript development tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
