search
HomeDatabaseRedisHow does Redis implement delay queue? Method introduction

How does Redis implement delay queue? Method introduction

Delay queue, as the name suggests, is a message queue with delay function. So, under what circumstances do I need such a queue?

1. Background

Let’s first look at the following business scenario:

  • When the order has been unpaid How to close the order in a timely manner when the order is in the refund status
  • How to regularly check whether the order in the refund status has been successfully refunded
  • When the order does not receive status notification from the downstream system for a long time, how to Strategies to achieve stepped synchronization of order status
  • When the system notifies the upstream system of the final status of successful payment, the upstream system returns a notification failure. How to perform asynchronous notification and send it at a divided frequency: 15s 3m 10m 30m 30m 1h 2h 6h 15h

1.1 Solution

  • The simplest way is to scan the meter regularly . For example, if the order payment expiration requirements are relatively high, the meter will be scanned every 2 seconds to check expired orders and actively close the orders. The advantage is that it is simple, The disadvantage is that it scans the table globally every minute, which wastes resources. If the order volume of the table data is about to expire is large, it will cause a delay in order closing.

  • Use RabbitMq or other MQ modifications to implement delay queues. The advantages are that it is open source and a ready-made and stable implementation solution. The disadvantages are: MQ is a message middleware. If the team technology stack is inherently If you have MQ, that's fine. If not, then it's a bit expensive to deploy a set of MQ to delay the queue.

  • Using Redis's zset and list features, we can use redis to implement it A delay queueRedisDelayQueue

2. Design goal

  • Real-time performance: Second-level errors are allowed for a certain period of time
  • High availability: supports stand-alone, supports clusters
  • Supports message deletion: the business will delete specified messages at any time
  • Message reliability: guaranteed to be at least Consumed once
  • Message persistence: Based on the persistence characteristics of Redis itself, if Redis data is lost, it means the loss of delayed messages, but primary backup and cluster guarantees can be provided. This can be considered for subsequent optimization to persist the message into MangoDB

3. Design plan

The design mainly includes the following points:

  • Treat the entire Redis as a message pool and store messages in KV format
  • Use ZSET as the priority queue and maintain the priority according to Score
  • Use the LIST structure to advance First-out consumption
  • ZSET and LIST store message addresses (corresponding to each KEY in the message pool)
  • Customize the routing object, store ZSET and LIST names, and send messages from ZSET routes to the correct LIST
  • Use timer to maintain routing
  • Implement message delay according to TTL rules

3.1 Design diagram

It is still based on Youzan’s delay queue design, optimization and code implementation. Youzan Design
How does Redis implement delay queue? Method introduction

##3.2 Data Structure

  • ZING:DELAY_QUEUE:JOB_POOL It is a Hash_Table structure that stores all delay queue information. KV structure: K=prefix projectName field = topic jobId V=CONENT;VThe data passed in by the client will be returned when consuming
  • ZING:DELAY_QUEUE:BUCKET There are delay queues The sequence set ZSET stores K=ID and the required execution timestamp, sorted according to the timestamp
  • ZING:DELAY_QUEUE:QUEUE LIST structure, each Topic has a LIST, and the list stores The JOB

How does Redis implement delay queue? Method introduction picture that currently needs to be consumed is for reference only. It can basically describe the execution of the entire process. The picture comes from the reference blog at the end of the article

3.3 Task life cycle

    When a new JOB is added, a piece of data will be inserted into
  1. ZING:DELAY_QUEUE:JOB_POOL and recorded Business side and consumer side. ZING:DELAY_QUEUE:BUCKET will also insert a record to record the execution timestamp
  2. The handling thread will go to
  3. ZING:DELAY_QUEUE:BUCKET to find which execution timestamps RunTimeMillis is smaller than the current time, delete all these records; at the same time, it will parse what the Topic of each task is, and then push these tasks to the list corresponding to TOPICZING:DELAY_QUEUE:QUEUE
  4. Each TOPIC LIST will have a listening thread to batch obtain the data to be consumed in the LIST, and all the acquired data will be thrown to the consumption thread pool of this TOPIC
  5. The execution of the consumption thread pool will go
  6. ZING:DELAY_QUEUE:JOB_POOLFind the data structure, return it to the callback structure, and execute the callback method.

3.4 Design Points

3.4.1 Basic concept

  • JOB: Tasks that require asynchronous processing are the basic units in the delay queue
  • Topic: a collection (queue) of jobs of the same type. For consumers to subscribe

3.4.2 Message structure

Each JOB must contain the following attributes

  • jobId: The unique identifier of the Job. Used to retrieve and delete specified Job information
  • topic: Job type. It can be understood as a specific business name
  • delay: the time the job needs to be delayed. Unit: seconds. (The server will convert it into an absolute time)
  • body: The content of the Job, for consumers to do specific business processing, stored in json format
  • retry: Number of failed retries
  • url: notification URL

3.5 Design details

3.5.1 How to consume quickly ZING:DELAY_QUEUE:QUEUE

The simplest implementation method is to use a timer to perform second-level scanning, in order to ensure the timeliness of message execution , you can set it to request Redis every 1S to determine whether there are JOBs to be consumed in the queue. But there will be a problem. If there are no consumable JOBs in the queue, then frequent scanning will be meaningless and a waste of resources. Fortunately, there is a BLPOP blocking primitive in the LIST. If the list If there is data, it will be returned immediately. If there is no data, it will be blocked there until data is returned. You can set the blocking timeout, and NULL will be returned after the timeout. The specific implementation methods and strategies will be introduced in the code.

3.5.2 Avoid repeated transfer and consumption of messages caused by timing

  • Use Redis's distributed lock to control the transfer of messages. In order to avoid problems caused by repeated transfer of messages
  • Use distributed locks to ensure the execution frequency of the timer

4. Core code implementation

4.1 Technical Description

Technology stack: SpringBoot, Redisson, Redis, distributed lock, timer

Note: This project does not realize the multiple Queue consumption in the design plan, and only opens one QUEUE. This will be optimized in the future

4.2 Core Entity

4.2.1 Add new objects to Job

/**
 * 消息结构
 *
 * @author 睁眼看世界
 * @date 2020年1月15日
 */
@Data
public class Job implements Serializable {

    private static final long serialVersionUID = 1L;

    /**
     * Job的唯一标识。用来检索和删除指定的Job信息
     */
    @NotBlank
    private String jobId;


    /**
     * Job类型。可以理解成具体的业务名称
     */
    @NotBlank
    private String topic;

    /**
     * Job需要延迟的时间。单位:秒。(服务端会将其转换为绝对时间)
     */
    private Long delay;

    /**
     * Job的内容,供消费者做具体的业务处理,以json格式存储
     */
    @NotBlank
    private String body;

    /**
     * 失败重试次数
     */
    private int retry = 0;

    /**
     * 通知URL
     */
    @NotBlank
    private String url;
}

4.2.2 Delete objects from Job

/**
 * 消息结构
 *
 * @author 睁眼看世界
 * @date 2020年1月15日
 */
@Data
public class JobDie implements Serializable {

    private static final long serialVersionUID = 1L;

    /**
     * Job的唯一标识。用来检索和删除指定的Job信息
     */
    @NotBlank
    private String jobId;


    /**
     * Job类型。可以理解成具体的业务名称
     */
    @NotBlank
    private String topic;
}

4.3 Transport thread

/**
 * 搬运线程
 *
 * @author 睁眼看世界
 * @date 2020年1月17日
 */
@Slf4j
@Component
public class CarryJobScheduled {

    @Autowired
    private RedissonClient redissonClient;

    /**
     * 启动定时开启搬运JOB信息
     */
    @Scheduled(cron = "*/1 * * * * *")
    public void carryJobToQueue() {
        System.out.println("carryJobToQueue --->");
        RLock lock = redissonClient.getLock(RedisQueueKey.CARRY_THREAD_LOCK);
        try {
            boolean lockFlag = lock.tryLock(LOCK_WAIT_TIME, LOCK_RELEASE_TIME, TimeUnit.SECONDS);
            if (!lockFlag) {
                throw new BusinessException(ErrorMessageEnum.ACQUIRE_LOCK_FAIL);
            }
            RScoredSortedSet<object> bucketSet = redissonClient.getScoredSortedSet(RD_ZSET_BUCKET_PRE);
            long now = System.currentTimeMillis();
            Collection<object> jobCollection = bucketSet.valueRange(0, false, now, true);
            List<string> jobList = jobCollection.stream().map(String::valueOf).collect(Collectors.toList());
            RList<string> readyQueue = redissonClient.getList(RD_LIST_TOPIC_PRE);
            readyQueue.addAll(jobList);
            bucketSet.removeAllAsync(jobList);
        } catch (InterruptedException e) {
            log.error("carryJobToQueue error", e);
        } finally {
            if (lock != null) {
                lock.unlock();
            }
        }
    }
}</string></string></object></object>

4.4 Consumer thread

@Slf4j
@Component
public class ReadyQueueContext {

    @Autowired
    private RedissonClient redissonClient;

    @Autowired
    private ConsumerService consumerService;

    /**
     * TOPIC消费线程
     */
    @PostConstruct
    public void startTopicConsumer() {
        TaskManager.doTask(this::runTopicThreads, "开启TOPIC消费线程");
    }

    /**
     * 开启TOPIC消费线程
     * 将所有可能出现的异常全部catch住,确保While(true)能够不中断
     */
    @SuppressWarnings("InfiniteLoopStatement")
    private void runTopicThreads() {
        while (true) {
            RLock lock = null;
            try {
                lock = redissonClient.getLock(CONSUMER_TOPIC_LOCK);
            } catch (Exception e) {
                log.error("runTopicThreads getLock error", e);
            }
            try {
                if (lock == null) {
                    continue;
                }
                // 分布式锁时间比Blpop阻塞时间多1S,避免出现释放锁的时候,锁已经超时释放,unlock报错
                boolean lockFlag = lock.tryLock(LOCK_WAIT_TIME, LOCK_RELEASE_TIME, TimeUnit.SECONDS);
                if (!lockFlag) {
                    continue;
                }

                // 1. 获取ReadyQueue中待消费的数据
                RBlockingQueue<string> queue = redissonClient.getBlockingQueue(RD_LIST_TOPIC_PRE);
                String topicId = queue.poll(60, TimeUnit.SECONDS);
                if (StringUtils.isEmpty(topicId)) {
                    continue;
                }

                // 2. 获取job元信息内容
                RMap<string> jobPoolMap = redissonClient.getMap(JOB_POOL_KEY);
                Job job = jobPoolMap.get(topicId);

                // 3. 消费
                FutureTask<boolean> taskResult = TaskManager.doFutureTask(() -> consumerService.consumerMessage(job.getUrl(), job.getBody()), job.getTopic() + "-->消费JobId-->" + job.getJobId());
                if (taskResult.get()) {
                    // 3.1 消费成功,删除JobPool和DelayBucket的job信息
                    jobPoolMap.remove(topicId);
                } else {
                    int retrySum = job.getRetry() + 1;
                    // 3.2 消费失败,则根据策略重新加入Bucket

                    // 如果重试次数大于5,则将jobPool中的数据删除,持久化到DB
                    if (retrySum > RetryStrategyEnum.RETRY_FIVE.getRetry()) {
                        jobPoolMap.remove(topicId);
                        continue;
                    }
                    job.setRetry(retrySum);
                    long nextTime = job.getDelay() + RetryStrategyEnum.getDelayTime(job.getRetry()) * 1000;
                    log.info("next retryTime is [{}]", DateUtil.long2Str(nextTime));
                    RScoredSortedSet<object> delayBucket = redissonClient.getScoredSortedSet(RedisQueueKey.RD_ZSET_BUCKET_PRE);
                    delayBucket.add(nextTime, topicId);
                    // 3.3 更新元信息失败次数
                    jobPoolMap.put(topicId, job);
                }
            } catch (Exception e) {
                log.error("runTopicThreads error", e);
            } finally {
                if (lock != null) {
                    try {
                        lock.unlock();
                    } catch (Exception e) {
                        log.error("runTopicThreads unlock error", e);
                    }
                }
            }
        }
    }
}</object></boolean></string></string>

4.5 Adding and deleting JOB

/**
 * 提供给外部服务的操作接口
 *
 * @author why
 * @date 2020年1月15日
 */
@Slf4j
@Service
public class RedisDelayQueueServiceImpl implements RedisDelayQueueService {

    @Autowired
    private RedissonClient redissonClient;


    /**
     * 添加job元信息
     *
     * @param job 元信息
     */
    @Override
    public void addJob(Job job) {

        RLock lock = redissonClient.getLock(ADD_JOB_LOCK + job.getJobId());
        try {
            boolean lockFlag = lock.tryLock(LOCK_WAIT_TIME, LOCK_RELEASE_TIME, TimeUnit.SECONDS);
            if (!lockFlag) {
                throw new BusinessException(ErrorMessageEnum.ACQUIRE_LOCK_FAIL);
            }
            String topicId = RedisQueueKey.getTopicId(job.getTopic(), job.getJobId());

            // 1. 将job添加到 JobPool中
            RMap<string> jobPool = redissonClient.getMap(RedisQueueKey.JOB_POOL_KEY);
            if (jobPool.get(topicId) != null) {
                throw new BusinessException(ErrorMessageEnum.JOB_ALREADY_EXIST);
            }

            jobPool.put(topicId, job);

            // 2. 将job添加到 DelayBucket中
            RScoredSortedSet<object> delayBucket = redissonClient.getScoredSortedSet(RedisQueueKey.RD_ZSET_BUCKET_PRE);
            delayBucket.add(job.getDelay(), topicId);
        } catch (InterruptedException e) {
            log.error("addJob error", e);
        } finally {
            if (lock != null) {
                lock.unlock();
            }
        }
    }


    /**
     * 删除job信息
     *
     * @param job 元信息
     */
    @Override
    public void deleteJob(JobDie jobDie) {

        RLock lock = redissonClient.getLock(DELETE_JOB_LOCK + jobDie.getJobId());
        try {
            boolean lockFlag = lock.tryLock(LOCK_WAIT_TIME, LOCK_RELEASE_TIME, TimeUnit.SECONDS);
            if (!lockFlag) {
                throw new BusinessException(ErrorMessageEnum.ACQUIRE_LOCK_FAIL);
            }
            String topicId = RedisQueueKey.getTopicId(jobDie.getTopic(), jobDie.getJobId());

            RMap<string> jobPool = redissonClient.getMap(RedisQueueKey.JOB_POOL_KEY);
            jobPool.remove(topicId);

            RScoredSortedSet<object> delayBucket = redissonClient.getScoredSortedSet(RedisQueueKey.RD_ZSET_BUCKET_PRE);
            delayBucket.remove(topicId);
        } catch (InterruptedException e) {
            log.error("addJob error", e);
        } finally {
            if (lock != null) {
                lock.unlock();
            }
        }
    }
}</object></string></object></string>

5. Content to be optimized

  1. Currently there is only one Queue queue to store messages. When a large number of messages that need to be consumed accumulate, the timeliness of message notifications will be affected. The improvement method is to open multiple Queues, perform message routing, and then open multiple consumer threads for consumption to provide throughput.
  2. The messages are not persisted, which is risky. The messages will be persisted to MangoDB in the future.

6. Source code

Please get more detailed source code at the address below

  • RedisDelayQueue implementation zing-delay-queue(https://gitee.com/whyCodeData/zing-project/tree/master/zing-delay-queue)
  • RedissonStarter redisson-spring-boot-starter(https://gitee.com/whyCodeData/zing-project/tree/master/zing-starter/redisson-spring-boot-starter)
  • project application zing-pay(https://gitee.com/whyCodeData/zing-pay)

##7. Reference

    https://tech.youzan.com/queuing_delay/
  • https://blog.csdn.net/u010634066/article/details/98864764
More redis For knowledge, please pay attention to:

redis introductory tutorial column.

The above is the detailed content of How does Redis implement delay queue? Method introduction. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:csdn. If there is any infringement, please contact admin@php.cn delete
Redis's Role: Exploring the Data Storage and Management CapabilitiesRedis's Role: Exploring the Data Storage and Management CapabilitiesApr 22, 2025 am 12:10 AM

Redis plays a key role in data storage and management, and has become the core of modern applications through its multiple data structures and persistence mechanisms. 1) Redis supports data structures such as strings, lists, collections, ordered collections and hash tables, and is suitable for cache and complex business logic. 2) Through two persistence methods, RDB and AOF, Redis ensures reliable storage and rapid recovery of data.

Redis: Understanding NoSQL ConceptsRedis: Understanding NoSQL ConceptsApr 21, 2025 am 12:04 AM

Redis is a NoSQL database suitable for efficient storage and access of large-scale data. 1.Redis is an open source memory data structure storage system that supports multiple data structures. 2. It provides extremely fast read and write speeds, suitable for caching, session management, etc. 3.Redis supports persistence and ensures data security through RDB and AOF. 4. Usage examples include basic key-value pair operations and advanced collection deduplication functions. 5. Common errors include connection problems, data type mismatch and memory overflow, so you need to pay attention to debugging. 6. Performance optimization suggestions include selecting the appropriate data structure and setting up memory elimination strategies.

Redis: Real-World Use Cases and ExamplesRedis: Real-World Use Cases and ExamplesApr 20, 2025 am 12:06 AM

The applications of Redis in the real world include: 1. As a cache system, accelerate database query, 2. To store the session data of web applications, 3. To implement real-time rankings, 4. To simplify message delivery as a message queue. Redis's versatility and high performance make it shine in these scenarios.

Redis: Exploring Its Features and FunctionalityRedis: Exploring Its Features and FunctionalityApr 19, 2025 am 12:04 AM

Redis stands out because of its high speed, versatility and rich data structure. 1) Redis supports data structures such as strings, lists, collections, hashs and ordered collections. 2) It stores data through memory and supports RDB and AOF persistence. 3) Starting from Redis 6.0, multi-threaded I/O operations have been introduced, which has improved performance in high concurrency scenarios.

Is Redis a SQL or NoSQL Database? The Answer ExplainedIs Redis a SQL or NoSQL Database? The Answer ExplainedApr 18, 2025 am 12:11 AM

RedisisclassifiedasaNoSQLdatabasebecauseitusesakey-valuedatamodelinsteadofthetraditionalrelationaldatabasemodel.Itoffersspeedandflexibility,makingitidealforreal-timeapplicationsandcaching,butitmaynotbesuitableforscenariosrequiringstrictdataintegrityo

Redis: Improving Application Performance and ScalabilityRedis: Improving Application Performance and ScalabilityApr 17, 2025 am 12:16 AM

Redis improves application performance and scalability by caching data, implementing distributed locking and data persistence. 1) Cache data: Use Redis to cache frequently accessed data to improve data access speed. 2) Distributed lock: Use Redis to implement distributed locks to ensure the security of operation in a distributed environment. 3) Data persistence: Ensure data security through RDB and AOF mechanisms to prevent data loss.

Redis: Exploring Its Data Model and StructureRedis: Exploring Its Data Model and StructureApr 16, 2025 am 12:09 AM

Redis's data model and structure include five main types: 1. String: used to store text or binary data, and supports atomic operations. 2. List: Ordered elements collection, suitable for queues and stacks. 3. Set: Unordered unique elements set, supporting set operation. 4. Ordered Set (SortedSet): A unique set of elements with scores, suitable for rankings. 5. Hash table (Hash): a collection of key-value pairs, suitable for storing objects.

Redis: Classifying Its Database ApproachRedis: Classifying Its Database ApproachApr 15, 2025 am 12:06 AM

Redis's database methods include in-memory databases and key-value storage. 1) Redis stores data in memory, and reads and writes fast. 2) It uses key-value pairs to store data, supports complex data structures such as lists, collections, hash tables and ordered collections, suitable for caches and NoSQL databases.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.