search
HomeDatabaseRedisWhere to configure cache cleaning policy in redis

Where to configure cache cleaning policy in redis

When using Redis as a cache, if the memory space is full, old data will be automatically evicted. Memcached works this way by default, and most developers are familiar with it. (Recommended study: Redis Video Tutorial)

LRU is the only recycling algorithm supported by Redis. This article introduces in detail the maxmemory instruction used to limit the maximum memory usage, and explains in depth what Redis uses. Approximate LRU algorithm.

maxmemory configuration directive

maxmemory is used to specify the maximum memory that Redis can use. It can be set in the redis.conf file or dynamically modified during operation through the CONFIG SET command.

For example, to set a memory limit of 100MB, you can configure it in the redis.conf file like this:

maxmemory 100mb

Set maxmemory to 0, which means no memory limit. Of course, there is an implicit limitation for 32-bit systems: up to 3GB of RAM.

When memory usage reaches the maximum limit, if new data needs to be stored, Redis may directly return an error message or delete some old data depending on the configured policies.

Eviction policy

When the maximum memory limit (maxmemory) is reached, Redis determines the specific behavior based on the policy configured by maxmemory-policy.

The current version, the strategies supported by Redis 3.0 include:

noeviction: Do not delete the strategy. When the maximum memory limit is reached, if more memory is needed, directly Return error message. Most write commands will cause more memory to be occupied (with rare exceptions, such as DEL).

allkeys-lru: Common to all keys; delete the least recently used (LRU) keys first.

volatile-lru: Only the part with expire set; delete the least recently used (LRU) key first.

allkeys-random: Common to all keys; randomly delete some keys.

volatile-random: Only limited to the part where expire is set; randomly delete a part of the key.

volatile-ttl: Only limited to the part where expire is set; keys with short remaining time (time to live, TTL) will be deleted first.

If the expire key is not set and the prerequisites are not met; then the behavior of volatile-lru, volatile-random and volatile-ttl strategies is basically the same as noeviction (no deletion).

You need to choose an appropriate eviction strategy based on the characteristics of the system. Of course, you can also dynamically set the eviction policy through commands during operation, and monitor cache misses and hits through the INFO command for tuning.

Generally speaking:

If it is divided into hot data and cold data, it is recommended to use the allkeys-lru strategy. That is, some of the keys are often read and written. If you are not sure about the specific business characteristics, then allkeys-lru is a good choice.

If you need to read and write all keys in a loop, or the access frequency of each key is similar, you can use the allkeys-random strategy, that is, the probability of reading and writing all elements is almost the same.

If you want Redis to filter keys that need to be deleted based on TTL, please use the volatile-ttl strategy.

The main application scenarios of volatile-lru and volatile-random strategies are: instances with both cache and persistent keys. Generally speaking, for scenarios like this, two separate Redis instances should be used.

It is worth mentioning that setting expire will consume additional memory, so using the allkeys-lru strategy can make more efficient use of memory, because this way you no longer need to set the expiration time.

Internal implementation of eviction

The eviction process can be understood as follows:

The client executes a command, resulting in Redis Data increases and takes up more memory.

Redis checks the memory usage. If it exceeds the maxmemory limit, some keys will be cleared according to the policy.

Continue to execute the next command, and so on.

During this process, the memory usage will continuously reach the limit value, then exceed it, and then delete some keys, and the usage will drop below the limit value again.

If a certain command causes a large amount of memory usage (such as saving a large set through a new key), the memory usage may significantly exceed the maxmemory limit for a period of time.

Approximate LRU algorithm

Redis does not use the complete LRU algorithm. The automatically evicted key is not necessarily the one that best satisfies the LRU characteristics. Instead, a small number of key samples are extracted through the approximate LRU algorithm, and then the key with the oldest access time is deleted.

The eviction algorithm has been greatly optimized since Redis 3.0, using pool as a candidate. This greatly improves the algorithm efficiency and is closer to the real LRU algorithm.

In the Redis LRU algorithm, the accuracy of the algorithm can be tuned by setting the number of samples. Configure through the following instructions:

maxmemory-samples 5

Why not use full LRU implementation? The reason is to save memory. But the behavior of Redis is basically equivalent to LRU. The following is a behavioral comparison chart between Redis LRU and the complete LRU algorithm.

Where to configure cache cleaning policy in redisDuring the test, access starts from the first key, so the first key is the best eviction object.

You can see three types of points from the picture, forming three different strips.

The light gray part indicates the evicted object.

The gray part indicates "not evicted" objects.

The green part indicates the objects added later.

In the pure LRU algorithm implementation, the first half of the old keys are released. The LRU algorithm of Redis only releases longer keys probabilistically.

As you can see, in Redis 3.0, the effect of 5 samples is much better than that of Redis 2.8. Of course, Redis 2.8 is also good, the last accessed key is basically still in the memory. When using 10 samples in Redis 3.0, it is very close to the pure LRU algorithm.

Note that LRU is only a probability model used to predict that a certain key may continue to be accessed in the future. In addition, if the data access situation conforms to the power law distribution (power law), then for most requests , LRU will perform well.

In the simulation, we found that if power law access is used, the results of pure LRU and Redis are very different, or even invisible.

Of course, you can also increase the number of samples to 10, at the cost of consuming some additional CPU, so that the results are closer to the real LRU, and the difference can be judged through cache miss statistics.

It is easy to set the sample size, just use the command CONFIG SET maxmemory-samples

For more Redis related technical articles, please visit the Redis Getting Started Tutorial column Get studying!

The above is the detailed content of Where to configure cache cleaning policy in redis. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Redis: Exploring Its Features and FunctionalityRedis: Exploring Its Features and FunctionalityApr 19, 2025 am 12:04 AM

Redis stands out because of its high speed, versatility and rich data structure. 1) Redis supports data structures such as strings, lists, collections, hashs and ordered collections. 2) It stores data through memory and supports RDB and AOF persistence. 3) Starting from Redis 6.0, multi-threaded I/O operations have been introduced, which has improved performance in high concurrency scenarios.

Is Redis a SQL or NoSQL Database? The Answer ExplainedIs Redis a SQL or NoSQL Database? The Answer ExplainedApr 18, 2025 am 12:11 AM

RedisisclassifiedasaNoSQLdatabasebecauseitusesakey-valuedatamodelinsteadofthetraditionalrelationaldatabasemodel.Itoffersspeedandflexibility,makingitidealforreal-timeapplicationsandcaching,butitmaynotbesuitableforscenariosrequiringstrictdataintegrityo

Redis: Improving Application Performance and ScalabilityRedis: Improving Application Performance and ScalabilityApr 17, 2025 am 12:16 AM

Redis improves application performance and scalability by caching data, implementing distributed locking and data persistence. 1) Cache data: Use Redis to cache frequently accessed data to improve data access speed. 2) Distributed lock: Use Redis to implement distributed locks to ensure the security of operation in a distributed environment. 3) Data persistence: Ensure data security through RDB and AOF mechanisms to prevent data loss.

Redis: Exploring Its Data Model and StructureRedis: Exploring Its Data Model and StructureApr 16, 2025 am 12:09 AM

Redis's data model and structure include five main types: 1. String: used to store text or binary data, and supports atomic operations. 2. List: Ordered elements collection, suitable for queues and stacks. 3. Set: Unordered unique elements set, supporting set operation. 4. Ordered Set (SortedSet): A unique set of elements with scores, suitable for rankings. 5. Hash table (Hash): a collection of key-value pairs, suitable for storing objects.

Redis: Classifying Its Database ApproachRedis: Classifying Its Database ApproachApr 15, 2025 am 12:06 AM

Redis's database methods include in-memory databases and key-value storage. 1) Redis stores data in memory, and reads and writes fast. 2) It uses key-value pairs to store data, supports complex data structures such as lists, collections, hash tables and ordered collections, suitable for caches and NoSQL databases.

Why Use Redis? Benefits and AdvantagesWhy Use Redis? Benefits and AdvantagesApr 14, 2025 am 12:07 AM

Redis is a powerful database solution because it provides fast performance, rich data structures, high availability and scalability, persistence capabilities, and a wide range of ecosystem support. 1) Extremely fast performance: Redis's data is stored in memory and has extremely fast read and write speeds, suitable for high concurrency and low latency applications. 2) Rich data structure: supports multiple data types, such as lists, collections, etc., which are suitable for a variety of scenarios. 3) High availability and scalability: supports master-slave replication and cluster mode to achieve high availability and horizontal scalability. 4) Persistence and data security: Data persistence is achieved through RDB and AOF to ensure data integrity and reliability. 5) Wide ecosystem and community support: with a huge ecosystem and active community,

Understanding NoSQL: Key Features of RedisUnderstanding NoSQL: Key Features of RedisApr 13, 2025 am 12:17 AM

Key features of Redis include speed, flexibility and rich data structure support. 1) Speed: Redis is an in-memory database, and read and write operations are almost instantaneous, suitable for cache and session management. 2) Flexibility: Supports multiple data structures, such as strings, lists, collections, etc., which are suitable for complex data processing. 3) Data structure support: provides strings, lists, collections, hash tables, etc., which are suitable for different business needs.

Redis: Identifying Its Primary FunctionRedis: Identifying Its Primary FunctionApr 12, 2025 am 12:01 AM

The core function of Redis is a high-performance in-memory data storage and processing system. 1) High-speed data access: Redis stores data in memory and provides microsecond-level read and write speed. 2) Rich data structure: supports strings, lists, collections, etc., and adapts to a variety of application scenarios. 3) Persistence: Persist data to disk through RDB and AOF. 4) Publish subscription: Can be used in message queues or real-time communication systems.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)