The list in python is a built-in data type of python. The data types in the list do not have to be the same, but the types in the array must all be the same. The data type in the list saves the address where the data is stored. Simply put, it is a pointer, not data. It is too troublesome to save a list. For example, list1=[1,2,3,'a'] requires 4 Pointers and four data, increase storage and consume CPU. The array encapsulated in numpy has very powerful functions, and the same data types are stored in it
Python itself does not have an array type, but it There are array types in the Numpy library. Recommended learning: Python video tutorial)
Both can be used to process multi-dimensional arrays.
The ndarray object in Numpy is used to process multi-dimensional arrays, and it serves as a fast and flexible big data container. Python lists can store one-dimensional arrays, and multi-dimensional arrays can be realized by nesting lists.
2 Storage efficiency and input and output performance are different.
Numpy is specially designed for the operation and calculation of arrays. The storage efficiency and input and output performance are far better than nested lists in Python. The larger the array, the more obvious the advantages of Numpy are.
3Element data type.
Generally, the type of all elements in a Numpy array must be the same, while the type of elements in a Python list is arbitrary, so Numpy arrays are not as good as Python lists in terms of general performance, but in scientific computing, they can It saves a lot of loop statements, and the code usage is much simpler than Python lists.
Creation of array
When creating a Numpy array, the parameter can be either a list or a tuple. For example:
>>> a=np.array((1,2,3))#参数是tuple >>> b=np.array([6,7,8])#参数是list >>> c=np.array([[1,2,3],[4,5,6]])#参数是二维list
In addition, you can also use other methods provided by numpy to create an array, for example:
>>> arr1=np.arange(1,10,1) >>> arr2=np.linspace(1,10,10)
np.arange(a,b,c) means to generate an array from a-b An array including b with interval c. The default data type is int32. But linspace(a,b,c) means dividing a-b equally into c points, which includes b.
For more Python related technical articles, please visit the Python Tutorial column to learn!
The above is the detailed content of The difference between python arrays and lists. For more information, please follow other related articles on the PHP Chinese website!

Arraysarebetterforelement-wiseoperationsduetofasteraccessandoptimizedimplementations.1)Arrayshavecontiguousmemoryfordirectaccess,enhancingperformance.2)Listsareflexiblebutslowerduetopotentialdynamicresizing.3)Forlargedatasets,arrays,especiallywithlib

Mathematical operations of the entire array in NumPy can be efficiently implemented through vectorized operations. 1) Use simple operators such as addition (arr 2) to perform operations on arrays. 2) NumPy uses the underlying C language library, which improves the computing speed. 3) You can perform complex operations such as multiplication, division, and exponents. 4) Pay attention to broadcast operations to ensure that the array shape is compatible. 5) Using NumPy functions such as np.sum() can significantly improve performance.

In Python, there are two main methods for inserting elements into a list: 1) Using the insert(index, value) method, you can insert elements at the specified index, but inserting at the beginning of a large list is inefficient; 2) Using the append(value) method, add elements at the end of the list, which is highly efficient. For large lists, it is recommended to use append() or consider using deque or NumPy arrays to optimize performance.

TomakeaPythonscriptexecutableonbothUnixandWindows:1)Addashebangline(#!/usr/bin/envpython3)andusechmod xtomakeitexecutableonUnix.2)OnWindows,ensurePythonisinstalledandassociatedwith.pyfiles,oruseabatchfile(run.bat)torunthescript.

When encountering a "commandnotfound" error, the following points should be checked: 1. Confirm that the script exists and the path is correct; 2. Check file permissions and use chmod to add execution permissions if necessary; 3. Make sure the script interpreter is installed and in PATH; 4. Verify that the shebang line at the beginning of the script is correct. Doing so can effectively solve the script operation problem and ensure the coding process is smooth.

Arraysaregenerallymorememory-efficientthanlistsforstoringnumericaldataduetotheirfixed-sizenatureanddirectmemoryaccess.1)Arraysstoreelementsinacontiguousblock,reducingoverheadfrompointersormetadata.2)Lists,oftenimplementedasdynamicarraysorlinkedstruct

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

Python lists can store different types of data. The example list contains integers, strings, floating point numbers, booleans, nested lists, and dictionaries. List flexibility is valuable in data processing and prototyping, but it needs to be used with caution to ensure the readability and maintainability of the code.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

WebStorm Mac version
Useful JavaScript development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.
