Recursion in JavaScript refers to the process of a function repeatedly calling itself. The function call is built on the stack. The function call at the top of the stack is always the first to pop up. We can view the stack of calls through the development tools that come with the browser
It is very difficult to truly understand recursion in JavaScript, and some people even call it an unnecessarily memory-intensive and complex version. The "for loop". Next, I will introduce this knowledge to you in detail in the article, I hope it will be helpful to you.
[Recommended course: JavaScript Tutorial]
What is recursion in programming?
Essentially, recursion is when a function or subroutine calls itself repeatedly. All recursive function calls must have a base case. The base case is a specific condition that makes a function return a value rather than calling itself again. To prevent a recursive function from calling itself infinitely, a base case must exist. If omitted or written incorrectly, an error will occur.
An incorrect base case refers to a base case that does not include all possible user inputs, which may result in endless recursive function calls due to specific inputs passed through the base case, resulting in calls to Stack overflow.
Function calls are stored on the call stack
Function calls are stored on the stack, and the call stack is a specific implementation of the stack data structure. It is a LIFO (last in, first out) data structure, which means that function calls placed at the top of the stack are the first to pop.
Example: Calculate the factorial of 5
<script> function factorial(num) { var nextNum = num - 1; if (num === 1) { return num; } return num * factorial(nextNum); } console.log(factorial(5)); </script>
The output result is: 120
In the above code, when parsed to console.log( factorial(5));
When,
first console.log() will be pushed to the stack, then factorial(5) and its result will be passed to the console.log() function, when we When factorial(5) is entered, the call stack will look like this
Statementreturn num * factorial(nextNum);
Indicates that the factorial function returns num (this The example means 5) multiplied by the return value of the recursive function call, of which 4 is passed in. Essentially, the function returns the following value
return 5 * factorial(4);
Because factorial(4) is a function, we will push this function call onto the call stack. Now we will repeat the same process until we reach the base case i. when num equals 1. At this point, the call stack will look like this.
Once we reach the base case, function factorial(1) returns the value 1. So now we know that factorial(1) is equal to 1, factorial(2) ) also returns a non-function value: 2 * factorial(1) , which is 2 * 1 = 2.
Next, factorial(3) returns 3 * factorial(2), which is equal to 6. And so on, until we get factorial(5), which returns 5 * 24 = 120.
How to view the call stack
If you are using the chrome web browser, press f12 (on Windows) to open the chrome developer tools. On the top tab, you will see menu labels like Elements, Profiles, Console, Network, Sources, etc. Click "Source". As shown below
You can visually view the call stack through this development tool. When a recursive function is called with a condition of num === 1, it will return 1. Afterwards, each factorial function call is popped off the stack when the function call returns.
Summary: The above is the entire content of this article, I hope it will be helpful to everyone.
The above is the detailed content of How to Deeply Understand Recursion in JavaScript. For more information, please follow other related articles on the PHP Chinese website!

是的,C++Lambda表达式可以通过使用std::function支持递归:使用std::function捕获Lambda表达式的引用。通过捕获的引用,Lambda表达式可以递归调用自身。

给定两个字符串str_1和str_2。目标是使用递归过程计算字符串str1中子字符串str2的出现次数。递归函数是在其定义中调用自身的函数。如果str1是"Iknowthatyouknowthatiknow",str2是"know"出现次数为-3让我们通过示例来理解。例如输入str1="TPisTPareTPamTP",str2="TP";输出Countofoccurrencesofasubstringrecursi

我们以整数数组Arr[]作为输入。目标是使用递归方法在数组中找到最大和最小的元素。由于我们使用递归,我们将遍历整个数组,直到达到长度=1,然后返回A[0],这形成了基本情况。否则,将当前元素与当前最小或最大值进行比较,并通过递归更新其值以供后续元素使用。让我们看看这个的各种输入输出场景−输入 −Arr={12,67,99,76,32};输出 −数组中的最大值:99解释 &mi

Python是一门易学易用的编程语言,然而在使用Python编写递归函数时,可能会遇到递归深度过大的错误,这时就需要解决这个问题。本文将为您介绍如何解决Python的最大递归深度错误。1.了解递归深度递归深度是指递归函数嵌套的层数。在Python默认情况下,递归深度的限制是1000,如果递归的层数超过这个限制,系统就会报错。这种报错通常称为“最大递归深度错误

如何使用Vue表单处理实现表单的递归嵌套引言:随着前端数据处理和表单处理的复杂性不断增加,我们需要通过一种灵活的方式来处理复杂的表单。Vue作为一种流行的JavaScript框架,为我们提供了许多强大的工具和特性来处理表单的递归嵌套。本文将向大家介绍如何使用Vue来处理这种复杂的表单,并附上代码示例。一、表单的递归嵌套在某些场景下,我们可能需要处理递归嵌套的

在Linux系统中,“ls”命令是一个非常有用的工具,它提供了对当前目录中文件和文件夹的简洁概述。通过“ls”命令,您可以快速查看文件和文件夹的权限、属性等重要信息。虽然“ls”命令是一个基本的命令,但是通过结合不同的子命令和选项,它可以成为系统管理员和用户的重要工具。通过熟练使用“ls”命令及其各种选项,您可以更高效地管理文件系统,快速定位所需文件,以及执行各种操作。因此,“ls”命令不仅可以帮助您了解当前目录结构,还可以提高您的工作效率。比如,在Linux系统中,通过使用带有递归选项的"ls

注:本文以Go语言的角度来比较研究循环和递归。在编写程序时,经常会遇到需要对一系列数据或操作进行重复处理的情况。为了实现这一点,我们需要使用循环或递归。循环和递归都是常用的处理方式,但在实际应用中,它们各有优缺点,因此在选择使用哪种方法时需要考虑实际情况。本文将对Go语言中的循环和递归进行比较研究。一、循环循环是一种重复执行某段代码的机制。Go语言中主要有三

随着互联网的发展,各种网站和应用程序中都出现了树形结构的展示,例如分类目录、人员组织架构、权限管理等。在这些应用场景中,递归树结构已经成为了非常重要且实用的模型之一。ThinkPHP6是一种基于MVC模型的PHP开发框架,其拥有丰富的扩展库和优秀的性能,广受开发者的认可和使用,而在ThinkPHP6中实现递归树结构也变得更加方便了。下面,我们将介绍如何在Th


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Linux new version
SublimeText3 Linux latest version
