search
HomeBackend DevelopmentPython TutorialPython3 crawler example NetEase Cloud music crawler

This article brings you the NetEase Cloud Music Crawler example of Python3 crawler. It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you.

The goal this time is to crawl all comments on the specified song on NetEase Cloud Music and generate a word cloud

Specific steps:

1: Implement JS encryption

It is not difficult to find this ajax interface. The problem is that the data passed is obtained through js encryption, so you need to check the js code.

By cutting off debugging, you can find that the data is encrypted by the window.asrsea function in core_8556f33641851a422ec534e33e6fa5a4.js?8556f33641851a422ec534e33e6fa5a4.js.

Through further search, you can find the following function:

function() {
    // 生成长度为16的随机字符串
    function a(a) {
        var d, e, b = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789", c = "";
        for (d = 0; a > d; d += 1)
            e = Math.random() * b.length,
            e = Math.floor(e),
            c += b.charAt(e);
        return c
    }
    // 实现AES加密
    function b(a, b) {
        var c = CryptoJS.enc.Utf8.parse(b)
          , d = CryptoJS.enc.Utf8.parse("0102030405060708")
          , e = CryptoJS.enc.Utf8.parse(a)
          , f = CryptoJS.AES.encrypt(e, c, {
            iv: d,
            mode: CryptoJS.mode.CBC
        });
        return f.toString()
    }
    // 实现RSA加密
    function c(a, b, c) {
        var d, e;
        return setMaxDigits(131),
        d = new RSAKeyPair(b,"",c),
        e = encryptedString(d, a)
    }
    // 得到加密后的结果
    function d(d, e, f, g) {
        var h = {}
          , i = a(16);
        return h.encText = b(d, g),
        h.encText = b(h.encText, i),
        h.encSecKey = c(i, e, f),
        h
    }
    function e(a, b, d, e) {
        var f = {};
        return f.encText = c(a + e, b, d),
        f
    }
}()

So we need to use Python to implement the above four functions. The first function to generate a random string is not difficult. The implemented code is as follows:

# 生成随机字符串
def generate_random_string(length):
    string = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
    # 初始化随机字符串
    random_string = ""
    # 生成一个长度为length的随机字符串
    for i in range(length):
        random_string += string[int(floor(random() * len(string)))]
    return random_string

The second is a function to implement AES encryption, and using AES encryption requires the use of the Crypto library. If this library is not installed, you need to install the pycrypto library first, and then install the Crypto library. After successful installation, If there is no Crypto but only crypto when importing, first open the Lib\site-packages\crypto folder in the Python installation directory. If there is a Cipher folder in it, return to ## Rename crypto to Crypto in the #Lib\site-packages directory, and then it should be imported successfully.

Since the plaintext length of AES encryption must be a multiple of 16, we need to perform necessary padding on the plaintext to satisfy that its length is a multiple of 16. The AES encryption mode is AES.MODE_CBC, initialization vector iv ='0102030405060708′.

The code to implement AES encryption is as follows:

# AES加密
def aes_encrypt(msg, key):
    # 如果不是16的倍数则进行填充
    padding = 16 - len(msg) % 16
    # 这里使用padding对应的单字符进行填充
    msg += padding * chr(padding)
    # 用来加密或者解密的初始向量(必须是16位)
    iv = '0102030405060708'
    # AES加密
    cipher = AES.new(key, AES.MODE_CBC, iv)
    # 加密后得到的是bytes类型的数据
    encrypt_bytes = cipher.encrypt(msg)
    # 使用Base64进行编码,返回byte字符串
    encode_string = base64.b64encode(encrypt_bytes)
    # 对byte字符串按utf-8进行解码
    encrypt_text = encode_string.decode('utf-8')
    # 返回结果
    return encrypt_text

The third is the function to implement RSA encryption,

In RSA encryption, both plaintext and ciphertext are numbers, The ciphertext of RSA is the result of finding mod N to the power of E of the number representing the plaintext. The length of the string obtained after RSA encryption is 256. If it is not long enough, we fill it with x characters.

The code to implement RSA encryption is as follows:

# RSA加密
def rsa_encrypt(random_string, key, f):
    # 随机字符串逆序排列
    string = random_string[::-1]
    # 将随机字符串转换成byte类型数据
    text = bytes(string, 'utf-8')
    # RSA加密
    sec_key = int(codecs.encode(text, encoding='hex'), 16) ** int(key, 16) % int(f, 16)
    # 返回结果
    return format(sec_key, 'x').zfill(256)

The fourth function is a function that gets two encryption parameters. The four parameters passed in, the first parameter

JSON.stringify (i3x) is the following content, of which the offset and limit parameters are required. The value of offset is (number of pages-1)*20, and the value of limit is 20

'{"offset":'+str(offset)+',"total":"True","limit":"20","csrf_token":""}'

The second parameter , the values ​​of the third parameter and the fourth parameter are obtained according to Zj4n.emj:


The value of encText is passed through AES twice Encrypted, encSecKey is obtained through RSA encryption, the specific code for implementation is as follows:

# 获取参数
def get_params(page):
    # 偏移量
    offset = (page - 1) * 20
    # offset和limit是必选参数,其他参数是可选的
    msg = '{"offset":' + str(offset) + ',"total":"True","limit":"20","csrf_token":""}'
    key = '0CoJUm6Qyw8W8jud'
    f = '00e0b509f6259df8642dbc35662901477df22677ec152b5ff68ace615bb7b725152b3ab17a87' \
        '6aea8a5aa76d2e417629ec4ee341f56135fccf695280104e0312ecbda92557c93870114af6c9' \
        'd05c4f7f0c3685b7a46bee255932575cce10b424d813cfe4875d3e82047b97ddef52741d546b' \
        '8e289dc6935b3ece0462db0a22b8e7'
    e = '010001'
    # 生成长度为16的随机字符串
    i = generate_random_string(16)
    # 第一次AES加密
    enc_text = aes_encrypt(msg, key)
    # 第二次AES加密之后得到params的值
    encText = aes_encrypt(enc_text, i)
    # RSA加密之后得到encSecKey的值
    encSecKey = rsa_encrypt(i, e, f)
    return encText, encSecKey

2. Parse and save comments


You can find it by viewing the preview information The username and comment content are all stored in json format data

#so it will be very easy to parse, just extract the nickname and content directly. The obtained data is saved in a txt file with the file name of the song. The implemented code is as follows:

# 爬取评论内容
def get_comments(data):
    # data=[song_id,song_name,page_num]
    url = 'https://music.163.com/weapi/v1/resource/comments/R_SO_4_' + str(data[0]) + '?csrf_token='
    # 得到两个加密参数
    text, key = get_params(data[2])
    # 发送post请求
    res = requests.post(url, headers=headers, data={"params": text, "encSecKey": key})
    if res.status_code == 200:
        print("正在爬取第{}页的评论".format(data[2]))
        # 解析
        comments = res.json()['comments']
        # 存储
        with open(data[1] + '.txt', 'a', encoding="utf-8") as f:
            for i in comments:
                f.write(i['content'] + "\n")
    else:
        print("爬取失败!")

3. Generate word cloud

Before proceeding with this step, you need to install the jieba and wordcloud modules. The jieba module is a module used for Chinese word segmentation. , the wordcloud module is a module used to generate word clouds, which you can learn by yourself.

I won’t go into details about this part. The specific code is as follows:

# 生成词云
def make_cloud(txt_name):
    with open(txt_name + ".txt", 'r', encoding="utf-8") as f:
        txt = f.read()
    # 结巴分词
    text = ''.join(jieba.cut(txt))
    # 定义一个词云
    wc = WordCloud(
        font_path="font.ttf",
        width=1200,
        height=800,
        max_words=100,
        max_font_size=200,
        min_font_size=10
    )
    # 生成词云
    wc.generate(text)
    # 保存为图片
    wc.to_file(txt_name + ".png")
The complete code has been uploaded to github (including font.ttf file): https://github.com/QAQ112233/WangYiYun

The above is the detailed content of Python3 crawler example NetEase Cloud music crawler. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:博客园. If there is any infringement, please contact admin@php.cn delete
How to Use Python to Find the Zipf Distribution of a Text FileHow to Use Python to Find the Zipf Distribution of a Text FileMar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

What are some popular Python libraries and their uses?What are some popular Python libraries and their uses?Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

Scraping Webpages in Python With Beautiful Soup: Search and DOM ModificationScraping Webpages in Python With Beautiful Soup: Search and DOM ModificationMar 08, 2025 am 10:36 AM

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

How to Create Command-Line Interfaces (CLIs) with Python?How to Create Command-Line Interfaces (CLIs) with Python?Mar 10, 2025 pm 06:48 PM

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use