search
HomeBackend DevelopmentC#.Net TutorialIt turns out that the Fibonacci sequence is also written this way, did you know?

There are many answers to "Non-recursive writing of Fibonacci" on Baidu, but they are not satisfactory. Firstly, it is too difficult to understand, and secondly, the performance is similar to that of recursion.

When it comes to the Fibonacci sequence, whether you are a novice programmer or a technical veteran, the first thing that comes to mind is definitely the recursive writing method. Then, the difference between technical veterans and program novices is that they will think of saving the results of recursion to reduce repeated calculations. These are very common operations, but have you ever thought that the Fibonacci sequence can also be written in a non-recursive way?
There are many answers to "Non-recursive writing of Fibonacci" on Baidu, but they are not satisfactory. Firstly, it is too difficult to understand, and secondly, the performance is similar to that of recursion. At the beginning, I also wanted to write one myself, as long as it simulates the call stack of recursive calls, but this idea is a bit taken for granted, and the program written is also very complicated. How to do it? At this time, Depth-first traversal of the tree can come in handy.
First, we define the tree nodes:
public class Node
        {
            public Node(long value, bool visited)
            {
                Value = value;
                Visited = visited;
            }

            public long Value { get; set; }//存放结点的值
            public bool Visited { get; set; }
        }

Then, we can happily learn how to write the stack of DFS

  public static long Fblc(int n)
        {
            Stack<Node> s = new Stack<Node>();
            s.Push(new Node(n, false));
            long sum = 0;
            long[] childrenResultMemo = new long[n+1];
            childrenResultMemo[0] = 1;
            childrenResultMemo[1] = 1;
            //long children = 0;
            while (s.Any())
            {
                var cur = s.Pop();
             
                    if (cur.Visited == false)
                    {
                        if (childrenResultMemo[cur.Value] == 0)
                        {
                            cur.Visited = true;
                            if (childrenResultMemo[cur.Value - 1] != 0 && childrenResultMemo[cur.Value - 2] != 0)
                            {
                                var result = childrenResultMemo[cur.Value - 1] + childrenResultMemo[cur.Value - 2];
                                childrenResultMemo[cur.Value] = result;
                                sum += result;
                                s.Push(cur);
                            }
                            else
                            {
                                s.Push(cur);
                                s.Push(new Node(cur.Value - 1, false));
                                s.Push(new Node(cur.Value - 2, false));
                            }
                        }
                        else
                        {
                            sum += childrenResultMemo[cur.Value];//保存子树结果的优化,会有个特殊情况要处理
                        }
                        
                    }
                   
                
            }

            return sum;
        }

The core idea of ​​the above algorithm is to traverse the stack and pop out the stack If the top element has been visited (visited is true), skip it (the above code uses the optimization of saving subtree results, there will be a special case to be handled, which will be detailed below); otherwise, the current parent node The visited mark is true, which means it has been visited and pushed to the stack; then all its child nodes are pushed to the stack.

If you follow this idea, the code you write will not look like the one above. The amount of code will be much smaller and more concise. However, the complexity of the algorithm will be similar to that of recursive writing because there will be repeated calculations.

What should we do? There is only one solution. Exchange space for time and store the results of the subtree. If the corresponding subtree has been calculated and has results, we will no longer traverse the depth of the next layer. Use the results directly. We save the subtree results in an array:

long[] childrenResultMemo = new long[n+1];

Usually if the subtree already has results, logically it should have been visited. However, there are special cases, which are subtree 0 and subtree 1 at the beginning:

childrenResultMemo[0] = 1;
childrenResultMemo[1] = 1;

Just add the results in the branch of this special case:

sum += childrenResultMemo[cur.Value];

How about this way of writing? rarely seen? In fact, the evaluation process of the Fibonacci sequence is like a depth-first traversal of the tree. So as long as it is the implementation of depth-first traversal, it is completely feasible.

Related articles:

Python prints Fibonacci sequence examples

PHP implements Fibonacci sequence

Related videos:

Data Structure Adventure—Queue Chapter

The above is the detailed content of It turns out that the Fibonacci sequence is also written this way, did you know?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
如何使用C#编写时间序列预测算法如何使用C#编写时间序列预测算法Sep 19, 2023 pm 02:33 PM

如何使用C#编写时间序列预测算法时间序列预测是一种通过分析过去的数据来预测未来数据趋势的方法。它在很多领域,如金融、销售和天气预报中有广泛的应用。在本文中,我们将介绍如何使用C#编写时间序列预测算法,并附上具体的代码示例。数据准备在进行时间序列预测之前,首先需要准备好数据。一般来说,时间序列数据应该具有足够的长度,并且是按照时间顺序排列的。你可以从数据库或者

如何使用Redis和C#开发分布式事务功能如何使用Redis和C#开发分布式事务功能Sep 21, 2023 pm 02:55 PM

如何使用Redis和C#开发分布式事务功能引言分布式系统的开发中,事务处理是一项非常重要的功能。事务处理能够保证在分布式系统中的一系列操作要么全部成功,要么全部回滚。Redis是一种高性能的键值存储数据库,而C#是一种广泛应用于开发分布式系统的编程语言。本文将介绍如何使用Redis和C#来实现分布式事务功能,并提供具体代码示例。I.Redis事务Redis

如何实现C#中的人脸识别算法如何实现C#中的人脸识别算法Sep 19, 2023 am 08:57 AM

如何实现C#中的人脸识别算法人脸识别算法是计算机视觉领域中的一个重要研究方向,它可以用于识别和验证人脸,广泛应用于安全监控、人脸支付、人脸解锁等领域。在本文中,我们将介绍如何使用C#来实现人脸识别算法,并提供具体的代码示例。实现人脸识别算法的第一步是获取图像数据。在C#中,我们可以使用EmguCV库(OpenCV的C#封装)来处理图像。首先,我们需要在项目

Redis在C#开发中的应用:如何实现高效的缓存更新Redis在C#开发中的应用:如何实现高效的缓存更新Jul 30, 2023 am 09:46 AM

Redis在C#开发中的应用:如何实现高效的缓存更新引言:在Web开发中,缓存是提高系统性能的常用手段之一。而Redis作为一款高性能的Key-Value存储系统,能够提供快速的缓存操作,为我们的应用带来了不少便利。本文将介绍如何在C#开发中使用Redis,实现高效的缓存更新。Redis的安装与配置在开始之前,我们需要先安装Redis并进行相应的配置。你可以

如何使用C#编写动态规划算法如何使用C#编写动态规划算法Sep 20, 2023 pm 04:03 PM

如何使用C#编写动态规划算法摘要:动态规划是求解最优化问题的一种常用算法,适用于多种场景。本文将介绍如何使用C#编写动态规划算法,并提供具体的代码示例。一、什么是动态规划算法动态规划(DynamicProgramming,简称DP)是一种用来求解具有重叠子问题和最优子结构性质的问题的算法思想。动态规划将问题分解成若干个子问题来求解,通过记录每个子问题的解,

如何实现C#中的图像压缩算法如何实现C#中的图像压缩算法Sep 19, 2023 pm 02:12 PM

如何实现C#中的图像压缩算法摘要:图像压缩是图像处理领域中的一个重要研究方向,本文将介绍在C#中实现图像压缩的算法,并给出相应的代码示例。引言:随着数字图像的广泛应用,图像压缩成为了图像处理中的重要环节。压缩能够减小存储空间和传输带宽,并能提高图像处理的效率。在C#语言中,我们可以通过使用各种图像压缩算法来实现对图像的压缩。本文将介绍两种常见的图像压缩算法:

C#开发中如何处理跨域请求和安全性问题C#开发中如何处理跨域请求和安全性问题Oct 08, 2023 pm 09:21 PM

C#开发中如何处理跨域请求和安全性问题在现代的网络应用开发中,跨域请求和安全性问题是开发人员经常面临的挑战。为了提供更好的用户体验和功能,应用程序经常需要与其他域或服务器进行交互。然而,浏览器的同源策略导致了这些跨域请求被阻止,因此需要采取一些措施来处理跨域请求。同时,为了保证数据的安全性,开发人员还需要考虑一些安全性问题。本文将探讨C#开发中如何处理跨域请

如何实现C#中的遗传算法如何实现C#中的遗传算法Sep 19, 2023 pm 01:07 PM

如何在C#中实现遗传算法引言:遗传算法是一种模拟自然选择和基因遗传机制的优化算法,其主要思想是通过模拟生物进化的过程来搜索最优解。在计算机科学领域,遗传算法被广泛应用于优化问题的解决,例如机器学习、参数优化、组合优化等。本文将介绍如何在C#中实现遗传算法,并提供具体的代码示例。一、遗传算法的基本原理遗传算法通过使用编码表示解空间中的候选解,并利用选择、交叉和

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool