Home  >  Article  >  Web Front-end  >  Detailed explanation of deduplication and optimization steps for constructing a binary tree array using js

Detailed explanation of deduplication and optimization steps for constructing a binary tree array using js

php中世界最好的语言
php中世界最好的语言Original
2018-05-03 11:09:061343browse

This time I will bring you a detailed explanation of the deduplication and optimization steps for constructing a binary tree array with js. What are the precautions for deduplication and optimization of a binary tree array with js? The following is a practical case, let’s take a look.

Preface

This article mainly introduces the relevant content about constructing a binary tree with js to deduplicate and optimize numerical arrays. It is shared for your reference. Learning, I won’t say much more below, let’s take a look at the detailed introduction.

Common two-layer loop to implement array deduplication

let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2]
let newArr = []
for (let i = 0; i < arr.length; i++) {
 let unique = true
 for (let j = 0; j < newArr.length; j++) {
  if (newArr[j] === arr[i]) {
   unique = false
   break
  }
 }
 if (unique) {
  newArr.push(arr[i])
 }
}
console.log(newArr)

Build a binary tree to achieve deduplication (only applicable to Array of numerical type)

Construct the previously traversed elements into a binary tree. Each node in the tree satisfies: the value of the left child node< current The value of the node < The value of the right child node

This optimizes the process of judging whether the element has appeared before

If the element is larger than the current node, you only need to judge whether the element is in the node. It just has to appear in the right subtree of the node

If the element is smaller than the current node, you only need to determine whether the element has appeared in the left subtree of the node

let arr = [0, 1, 2, 2, 5, 7, 11, 7, 6, 4,5, 2, 2]
class Node {
 constructor(value) {
  this.value = value
  this.left = null
  this.right = null
 }
}
class BinaryTree {
 constructor() {
  this.root = null
  this.arr = []
 }
 insert(value) {
  let node = new Node(value)
  if (!this.root) {
   this.root = node
   this.arr.push(value)
   return this.arr
  }
  let current = this.root
  while (true) {
   if (value > current.value) {
    if (current.right) {
     current = current.right
    } else {
     current.right = node
     this.arr.push(value)
     break
    }
   }
   if (value < current.value) {
    if (current.left) {
     current = current.left
    } else {
     current.left = node
     this.arr.push(value)
     break
    }
   }
   if (value === current.value) {
    break
   }
  }
  return this.arr
 }
}
let binaryTree = new BinaryTree()
for (let i = 0; i < arr.length; i++) {
 binaryTree.insert(arr[i])
}
console.log(binaryTree.arr)

Optimization idea one, record the maximum and minimum values

Record the maximum and minimum values ​​of the inserted elements. If it is larger than the largest element or the smallest element is smaller, insert it directly

let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2]
class Node {
 constructor(value) {
  this.value = value
  this.left = null
  this.right = null
 }
}
class BinaryTree {
 constructor() {
  this.root = null
  this.arr = []
  this.max = null
  this.min = null
 }
 insert(value) {
  let node = new Node(value)
  if (!this.root) {
   this.root = node
   this.arr.push(value)
   this.max = value
   this.min = value
   return this.arr
  }
  if (value > this.max) {
   this.arr.push(value)
   this.max = value
   this.findMax().right = node
   return this.arr
  }
  if (value < this.min) {
   this.arr.push(value)
   this.min = value
   this.findMin().left = node
   return this.arr
  }
  let current = this.root
  while (true) {
   if (value > current.value) {
    if (current.right) {
     current = current.right
    } else {
     current.right = node
     this.arr.push(value)
     break
    }
   }
   if (value < current.value) {
    if (current.left) {
     current = current.left
    } else {
     current.left = node
     this.arr.push(value)
     break
    }
   }
   if (value === current.value) {
    break
   }
  }
  return this.arr
 }
 findMax() {
  let current = this.root
  while (current.right) {
   current = current.right
  }
  return current
 }
 findMin() {
  let current = this.root
  while (current.left) {
   current = current.left
  }
  return current
 }
}
let binaryTree = new BinaryTree()
for (let i = 0; i < arr.length; i++) {
 binaryTree.insert(arr[i])
}
console.log(binaryTree.arr)

Optimization idea two, build a red-black tree

Build a red-black tree and balance the height of the tree

About the red-black tree Part, please see red-black tree insertion

let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2]
console.log(Array.from(new Set(arr)))
class Node {
 constructor(value) {
  this.value = value
  this.left = null
  this.right = null
  this.parent = null
  this.color = &#39;red&#39;
 }
}
class RedBlackTree {
 constructor() {
  this.root = null
  this.arr = []
 }
 insert(value) {
  let node = new Node(value)
  if (!this.root) {
   node.color = &#39;black&#39;
   this.root = node
   this.arr.push(value)
   return this
  }
  let cur = this.root
  let inserted = false
  while (true) {
   if (value > cur.value) {
    if (cur.right) {
     cur = cur.right
    } else {
     cur.right = node
     this.arr.push(value)
     node.parent = cur
     inserted = true
     break
    }
   }
   if (value < cur.value) {
    if (cur.left) {
     cur = cur.left
    } else {
     cur.left = node
     this.arr.push(value)
     node.parent = cur
     inserted = true
     break
    }
   }
   if (value === cur.value) {
    break
   }
  }
  // 调整树的结构
  if(inserted){
   this.fixTree(node)
  }
  return this
 }
 fixTree(node) {
  if (!node.parent) {
   node.color = &#39;black&#39;
   this.root = node
   return
  }
  if (node.parent.color === &#39;black&#39;) {
   return
  }
  let son = node
  let father = node.parent
  let grandFather = father.parent
  let directionFtoG = father === grandFather.left ? &#39;left&#39; : &#39;right&#39;
  let uncle = grandFather[directionFtoG === &#39;left&#39; ? &#39;right&#39; : &#39;left&#39;]
  let directionStoF = son === father.left ? &#39;left&#39; : &#39;right&#39;
  if (!uncle || uncle.color === &#39;black&#39;) {
   if (directionFtoG === directionStoF) {
    if (grandFather.parent) {
     grandFather.parent[grandFather.parent.left === grandFather ? &#39;left&#39; : &#39;right&#39;] = father
     father.parent = grandFather.parent
    } else {
     this.root = father
     father.parent = null
    }
    father.color = &#39;black&#39;
    grandFather.color = &#39;red&#39;
    father[father.left === son ? &#39;right&#39; : &#39;left&#39;] && (father[father.left === son ? &#39;right&#39; : &#39;left&#39;].parent = grandFather)
    grandFather[grandFather.left === father ? &#39;left&#39; : &#39;right&#39;] = father[father.left === son ? &#39;right&#39; : &#39;left&#39;]
    father[father.left === son ? &#39;right&#39; : &#39;left&#39;] = grandFather
    grandFather.parent = father
    return
   } else {
    grandFather[directionFtoG] = son
    son.parent = grandFather
    son[directionFtoG] && (son[directionFtoG].parent = father)
    father[directionStoF] = son[directionFtoG]
    father.parent = son
    son[directionFtoG] = father
    this.fixTree(father)
   }
  } else {
   father.color = &#39;black&#39;
   uncle.color = &#39;black&#39;
   grandFather.color = &#39;red&#39;
   this.fixTree(grandFather)
  }
 }
}
let redBlackTree = new RedBlackTree()
for (let i = 0; i < arr.length; i++) {
 redBlackTree.insert(arr[i])
}
console.log(redBlackTree.arr)

Other deduplication methods

Deduplication through Set object

[...new Set(arr)]

Through

sort() reduce() Method to remove duplicates

After sorting, compare adjacent elements to see if they are the same. If they are different, add them to the returned

It is worth noting that in the array, when sorting, the default

compare(2, '2') returns 0; and when reduce(), congruent comparison is performed

let arr = [0, 1, 2, &#39;2&#39;, 2, 5, 7, 11, 7, 5, 2, &#39;2&#39;, 2]
let newArr = []
arr.sort((a, b) => {
 let res = a - b
 if (res !== 0) {
  return res
 } else {
  if (a === b) {
   return 0
  } else {
   if (typeof a === 'number') {
    return -1
   } else {
    return 1
   }
  }
 }
}).reduce((pre, cur) => {
 if (pre !== cur) {
  newArr.push(cur)
  return cur
 }
 return pre
}, null)
By

include<a href="http://www.php.cn/wiki/137.html" target="_blank">s() </a> map() Method to remove duplicates

let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2]
let newArr = []
arr.map(a => !newArr.includes(a) && newArr.push(a))
By

includes() reduce() Method to remove duplication

let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2]
let newArr = arr.reduce((pre, cur) => {
  !pre.includes(cur) && pre.push(cur)
  return pre
}, [])
Pair JSON object method through object key value

let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2]
let obj = {}
arr.map(a => {
  if(!obj[JSON.stringify(a)]){
    obj[JSON.stringify(a)] = 1
  }
})
console.log(Object.keys(obj).map(a => JSON.parse(a)))
I believe you have mastered the method after reading the case in this article, please come for more exciting information Pay attention to other related articles on php Chinese website!

Recommended reading:

WeChat applet shares the page and jumps back to the homepage

ElTableColumn adds search summary function

jQuery automatically adds ellipses when the input text exceeds the specified number of lines

The above is the detailed content of Detailed explanation of deduplication and optimization steps for constructing a binary tree array using js. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn