


Detailed explanation of PHP serialization and deserialization principles
This article mainly shares with you the relevant knowledge of PHP serialization and deserialization principles in the PHP deserialization vulnerability series. Friends who need this can refer to it. Hope it helps everyone.
Preface
The serialization and deserialization functions of objects will not be described in detail. The result of serialization in PHP is a PHP-customized string. The format is somewhat similar to json.
We need to solve several problems when designing the serialization and deserialization of objects in any language
After serializing an object, the serialization result It has a self-describing function (knowing the specific type of this object from the serialization result.
Knowing the type is not enough, of course you also need to know the specific value corresponding to this type).
Permission control during serialization, you can customize serialization fields, etc., for example, it is very convenient to do it in golang.
Time performance issues: In some performance-sensitive scenarios Under this circumstance, object serialization cannot be a hindrance, for example: high-performance services (I often use protobuf to serialize).
Space performance issues: The result after serialization cannot be too long, such as a Int object, after serialization, the data length becomes 10 times the length of int, then there is a problem with this serialization algorithm.
This article only explains the serialization and reverse in PHP from the perspective of PHP code. The process of serialization. Remember that serialization and deserialization only operate on object data. Anyone with experience in object-oriented development should easily understand this.
1. Serialize And the deserialization method unserialize
php natively provides object serialization function, unlike c++...^_^. It is also very simple to use, just two interfaces.
class fobnn { public $hack_id; private $hack_name; public function __construct($name,$id) { $this->hack_name = $name; $this->hack_id = $id; } public function print() { echo $this->hack_name.PHP_EOL; } } $obj = new fobnn('fobnn',1); $obj->print(); $serializedstr = serialize($obj); //通过serialize接口序列化 echo $serializedstr.PHP_EOL;; $toobj = unserialize($serializedstr);//通过unserialize反序列化 $toobj->print();
fobnn O:5:"fobnn":2:{s:7:"hack_id";i:1;s:16:"fobnnhack_name";s:5:"fobnn";} fobnn
See the second line of output. This string is the result of serialization. This structure is actually very easy to understand. You can find It is mapped by object name/member name. Of course, the label names after serialization of members with different access rights are slightly different.
According to the three questions I mentioned above, then we can take a look
1. Self-describing function
O:5:"fobnn":2 where o represents the object type, and the type name is fobnn. In this format, the following 2 represents the 2 member objects.
Regarding member objects, it is actually the same set of sub-descriptions. This is a recursive definition.
The self-describing function mainly records the names of objects and members through strings. Implementation.
2. Performance issues
The time performance of PHP serialization will not be analyzed in this article. See the details later, but the serialization result is actually similar to the protocol defined by json/bson, with protocol headers. , the protocol header describes the type, and the protocol body describes the value corresponding to the type, and the serialization result will not be compressed.
2. Magic method in deserialization
Corresponding to the second problem mentioned above, there are actually solutions in PHP. One is through magic method, and the second is through custom serialization function. Let’s first introduce the magic method __sleep and __wakeup
##
class fobnn { public $hack_id; private $hack_name; public function __construct($name,$id) { $this->hack_name = $name; $this->hack_id = $id; } public function print() { echo $this->hack_name.PHP_EOL; } public function __sleep() { return array("hack_name"); } public function __wakeup() { $this->hack_name = 'haha'; } } $obj = new fobnn('fobnn',1); $obj->print(); $serializedstr = serialize($obj); echo $serializedstr.PHP_EOL;; $toobj = unserialize($serializedstr); $toobj->print();
fobnn O:5:"fobnn":1:{s:16:"fobnnhack_name";s:5:"fobnn";} hahawill call __sleep first before serialization and return an array of member names that need to be serialized. In this way, we can control the data that needs to be serialized. In the case, I only returned hack_name. You can see that only the hack_name member is serialized in the result. After the serialization is completed, __wakeup will be used. Here we can do some follow-up work, such as reconnecting to the database.
3. Customize the Serializable interface
interface Serializable { abstract public string serialize ( void ) abstract public void unserialize ( string $serialized ) }Through this interface we can customize the behavior of serialization and deserialization. This function can mainly be used to customize our serialization format.
class fobnn implements Serializable { public $hack_id; private $hack_name; public function __construct($name,$id) { $this->hack_name = $name; $this->hack_id = $id; } public function print() { echo $this->hack_name.PHP_EOL; } public function __sleep() { return array('hack_name'); } public function __wakeup() { $this->hack_name = 'haha'; } public function serialize() { return json_encode(array('id' => $this->hack_id ,'name'=>$this->hack_name )); } public function unserialize($var) { $array = json_decode($var,true); $this->hack_name = $array['name']; $this->hack_id = $array['id']; } } $obj = new fobnn('fobnn',1); $obj->print(); $serializedstr = serialize($obj); echo $serializedstr.PHP_EOL;; $toobj = unserialize($serializedstr); $toobj->print();
fobnn C:5:"fobnn":23:{{"id":1,"name":"fobnn"}} fobnnAfter using the custom serialization interface, our magic method is useless.
4.PHP dynamic type and PHP deserialization
class fobnn { public $hack_id; public $hack_name; public function __construct($name,$id) { $this->hack_name = $name; $this->hack_id = $id; } public function print() { var_dump($this->hack_name); } } $obj = new fobnn('fobnn',1); $obj->print(); $serializedstr = serialize($obj); echo $serializedstr.PHP_EOL;; $toobj = unserialize($serializedstr); $toobj->print(); $toobj2 = unserialize("O:5:\"fobnn\":2:{s:7:\"hack_id\";i:1;s:9:\"hack_name\";i:12345;}"); $toobj2->print();We modify the deserialization result of hack_name to int type, i:12345
##
string(5) "fobnn" O:5:"fobnn":2:{s:7:"hack_id";i:1;s:9:"hack_name";s:5:"fobnn";} string(5) "fobnn" int(12345)
It can be found that the object is successfully serialized back !And it can work normally!. Of course, this mechanism of PHP provides flexible and changeable syntax, but it also introduces security risks. We will continue to analyze the security issues caused by PHP serialization and deserialization features.
Related recommendations:
The above is the detailed content of Detailed explanation of PHP serialization and deserialization principles. For more information, please follow other related articles on the PHP Chinese website!

Thedifferencebetweenunset()andsession_destroy()isthatunset()clearsspecificsessionvariableswhilekeepingthesessionactive,whereassession_destroy()terminatestheentiresession.1)Useunset()toremovespecificsessionvariableswithoutaffectingthesession'soveralls

Stickysessionsensureuserrequestsareroutedtothesameserverforsessiondataconsistency.1)SessionIdentificationassignsuserstoserversusingcookiesorURLmodifications.2)ConsistentRoutingdirectssubsequentrequeststothesameserver.3)LoadBalancingdistributesnewuser

PHPoffersvarioussessionsavehandlers:1)Files:Default,simplebutmaybottleneckonhigh-trafficsites.2)Memcached:High-performance,idealforspeed-criticalapplications.3)Redis:SimilartoMemcached,withaddedpersistence.4)Databases:Offerscontrol,usefulforintegrati

Session in PHP is a mechanism for saving user data on the server side to maintain state between multiple requests. Specifically, 1) the session is started by the session_start() function, and data is stored and read through the $_SESSION super global array; 2) the session data is stored in the server's temporary files by default, but can be optimized through database or memory storage; 3) the session can be used to realize user login status tracking and shopping cart management functions; 4) Pay attention to the secure transmission and performance optimization of the session to ensure the security and efficiency of the application.

PHPsessionsstartwithsession_start(),whichgeneratesauniqueIDandcreatesaserverfile;theypersistacrossrequestsandcanbemanuallyendedwithsession_destroy().1)Sessionsbeginwhensession_start()iscalled,creatingauniqueIDandserverfile.2)Theycontinueasdataisloade

Absolute session timeout starts at the time of session creation, while an idle session timeout starts at the time of user's no operation. Absolute session timeout is suitable for scenarios where strict control of the session life cycle is required, such as financial applications; idle session timeout is suitable for applications that want users to keep their session active for a long time, such as social media.

The server session failure can be solved through the following steps: 1. Check the server configuration to ensure that the session is set correctly. 2. Verify client cookies, confirm that the browser supports it and send it correctly. 3. Check session storage services, such as Redis, to ensure that they are running normally. 4. Review the application code to ensure the correct session logic. Through these steps, conversation problems can be effectively diagnosed and repaired and user experience can be improved.

session_start()iscrucialinPHPformanagingusersessions.1)Itinitiatesanewsessionifnoneexists,2)resumesanexistingsession,and3)setsasessioncookieforcontinuityacrossrequests,enablingapplicationslikeuserauthenticationandpersonalizedcontent.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Dreamweaver CS6
Visual web development tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
