


Detailed explanation of examples of simple threads and coroutines in Python
The support for threads in python is indeed not enough, but it is said that python has a complete asynchronous network framework module. I hope to learn it in the future. Here is a brief summary of threads in python
threading library Can be used to execute arbitrary Python callable objects in a separate thread. Although this module does not have enough support for thread-related operations, we can still use simple threads to handle I/O operations to reduce program response time.
from threading import Thread import time def countdown(n): while n > 0: print('T-minus:', n) n -= 1 t = Thread(target=countdown, args=(10,)) t.start() # 开启线程 time.sleep(2) if t.is_alive() is True: print("停止线程...") t._stop() # 停止线程
start function is used To start a thread, the _stop function is used to stop the thread. In order to prevent problems such as blocking when performing I/O operations in a thread, after running for a period of time, you can determine whether the thread is still alive. If the thread still exists, call _stop() to stop it to prevent blocking (you can encapsulate the _stop function into the class, I didn't do that here).
Of course, you can call the ThreadPool thread pool to handle it instead of manually creating threads. If there is no need to share variables between threads, it is very convenient to use threads, which can reduce a lot of troublesome operations and save time. If we need to communicate between threads, we can use a queue to achieve it:
from queue import Queue from threading import Thread class kill: def terminate(self, t): if t.isAlive is True: t._stop() def product(out_q): for i in range(5): out_q.put(i) def consumer(in_q): for i in range(5): print(in_q.get()) q = Queue() t1 = Thread(target=consumer, args=(q,)) t2 = Thread(target=product, args=(q,)) t1.start() t2.start() k = kill() # 查询线程是否终止,防止阻塞... k.terminate(t1) k.terminate(t2)
Queue instance will be shared by all threads, and it owns all required locks so they can be safely shared among any number of threads. Be careful here, do not use queue class methods other than put() and get() methods in multi-threads, because this is unreliable in a multi-thread environment! For simple and small communication of data in threads, queues can be used. If large data requires interactive communication, python provides related modules that you can use. The specific u need baidu.
The so-called coroutine is actually a yield program in a single-threaded environment.
from collections import deque def countdown(n): while n > 0: print("T-minus", n) yield # 返回之后下次直接从这里执行...相当于C#里面得yield return . n -= 1 print("this is countdown!!!") def countup(n): x = 0 while x < n: print("Counting up", x) yield x += 1 class TaskScheduler: def __init__(self): self._task_queue = deque() def new_task(self, task): self._task_queue.append(task) def run(self): while self._task_queue: task = self._task_queue.popleft() try: next(task) self._task_queue.append(task) except StopIteration: pass sche = TaskScheduler() sche.new_task(countdown(10)) sche.new_task(countdown(5)) sche.new_task(countup(15)) sche.run()
Let me talk about my experience of using python during this period. python is indeed good, but its performance is also criticized. When I first started learning python, I also made some cool programs. , at least it sounds high-quality, such as using Python's natural language processing to do sentiment analysis and the hottest crawler programs, as well as making dazzling data analysis charts. Gradually, I let go of those, because the focus of the program is not on those. As long as you know the basic syntax and understand the official documents, you can make it. The focus of the program code is performance and optimization. To the greatest extent possible, write a program with the most complete functions, the best performance, and the most beautiful structure. In fact, this is a bit like the "cultural soft power" that political teachers often say. The "soft power" in a program should be to embed the most Suitable design patterns, the most complete program optimization, the most performance-efficient data structures, etc.
The above is the detailed content of Detailed explanation of examples of simple threads and coroutines in Python. For more information, please follow other related articles on the PHP Chinese website!

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

Dreamweaver Mac version
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software