Based on es6: asynchronous process control idea
——Based on es6: Promise/A+ specification and simple implementation of asynchronous process control ideas
Foreword:
The powerful asynchronous processing capability of nodejs makes it a great choice on the server side It's brilliant, and the number of applications based on it continues to increase, but the nested and difficult-to-understand code brought about by asynchrony makes nodejs not look so elegant and bloated. Code similar to this:
function println(name,callback){var value = {"ztf":"abc","abc":"def","def":1} setTimeout(function(){ callback(value[name]); },500); } println("ztf",function(name){ println(name,function(res){ console.log(res);//def println(res,function(res1){ console.log(res1);//1 }) }); });
The value object is defined in println of the above code, and callback is called with a delay of five hundred seconds to pass in the relevant value.
First call println Pass in "ztf", assuming that the next execution function depends on the value returned this time, then the call becomes the above code. Pass in ztf and return abc, use abc to return def, use def to return 1;
Because nodejs is used as a server, various database queries are indispensable. Database queries have more dependencies. For example, if I need to query the permissions of a certain user, then three steps are required
① Through id Find the user
② Find the corresponding role through the returned user role id
③ Find the corresponding permission through the role
Three levels of nesting relationships are needed here, and the code is also It’s almost the same as above.
promise/A+ specification
Promise represents the final result of an asynchronous operation. It has three states, namely unfinished state, completed state (resolve), failed state (reject) The state is irreversible, the completed state cannot return to uncompleted, and the failed state cannot become completed state
The main way to interact with promise is to pass in the callback function in its then method to form a chain call,
Implementation
First let’s look at how the Promise/A+ specification is called in specific applications:
We can change the above example to:
var printText = function(name){var deferred = new Deferred(); //new一个托管函数println(name,deferred.callback());//把回调函数托管到Deferred中实现return deferred.promise; //返回promise对象实现链式调用} printText("ztf") .then(function(name){ console.log(name);return printText(name); //第二次调用依赖第一次调用 返回promise对象 在成功态中判断 }) .then(function(res){ console.log(res);//defreturn printText(res); }) .then(function(res1){ console.log(res1);//1});
To a certain extent, this kind of code changes the status quo of continuous nesting of asynchronous code. Through the chain call of the then() method, the process control of the asynchronous code is achieved.
//处理回调var Promise = function(){this.queue = []; //存储的是回调函数的队列this.isPromise = true; }//延迟对象var Deferred = function(){this.promise = new Promise(); } Deferred.prototype = {//托管了callback回调函数 callback:function(){ },//完成态 resolve:function(){ },//失败态 reject:function(){ } }
Two objects are defined here, Promise and Deferred. Promise is responsible for processing the distribution of functions. Deferred, as its name implies, handles delayed objects.
Promise =.queue = []; .isPromise = = handler =((fulfilledHandler) == =((errorHandler) == = Deferred =.promise = =
You can see that the Promise.then method just inserts the callback into the queue, one is executed in the completion state and the other is executed in the failure state.
In order to complete the entire process, it is also necessary to define the processing method of completion state and failure state in Deferred:
//处理内部操作var Promise = function(){this.queue = []; //存储的是回调函数的队列this.isPromise = true; } Promise.prototype = {//then方法 fulfilledHandler是完成态时执行的回调函数 errorHandler则是失败态
then:function(fulfilledHandler,errorHandler){ var handler = {}; if(typeof(fulfilledHandler) == "function"){ handler.fulfilled = fulfilledHandler; } if(typeof(errorHandler) == "function"){ handler.errored = errorHandler; } this.queue.push(handler); return this; }
Deferred =.promise = = self = promise =((handler = promise.queue.shift())){ (handler && res = handler.fulfilled.apply(self,args); (res && res.isPromise){ res.queue ==
The completion state operation is added, and this code obtains .then the callback function set passed in promise.queue while is called in sequence, passing in the current arguments
Then we need to put the completion state in the managed callback function (Deferred.callback()) and execute it according to the logic:
Promise =.queue = []; .isPromise = = handler =((fulfilledHandler) == =((errorHandler) == = Deferred =.promise = = self = args = Array.prototype.slice.call(arguments); = args.concat(Array.prototype.slice.call(arguments,)); self = promise = args =((handler = promise.queue.shift())){ (handler && res = handler.fulfilled.apply(self,args); (res && res.isPromise){ res.queue ==
The code is here. The main functions have been completed, but the failure state has not been added. Its implementation is similar to the success state except that it lacks secondary nesting:
//处理内部操作var Promise = function(){this.queue = []; //存储的是回调函数的队列this.isPromise = true; } Promise.prototype = {//then方法 fulfilledHandler是完成态时执行的回调函数 errorHandler则是失败态 then:function(fulfilledHandler,errorHandler){var handler = {};if(typeof(fulfilledHandler) == "function"){ handler.fulfilled = fulfilledHandler; }if(typeof(errorHandler) == "function"){ handler.errored = errorHandler; }this.queue.push(handler);return this; } }//处理外部操作var Deferred = function(){this.promise = new Promise(); } Deferred.prototype = {//托管了callback回调函数 callback:function(){var self = this;var args = Array.prototype.slice.call(arguments); //将arguments转为数组return function(err){if(err){//这里是失败态 传入了error对象 self.reject.call(self,err);return; } args = args.concat(Array.prototype.slice.call(arguments,1)); //合并外部arguments 与内部arguments 去掉err//这里是完成态 console.log(args); self.resolve.apply(self,args); } },//完成态 resolve:function(){var self = this;var promise = self.promise;var args = arguments;var handler; while((handler = promise.queue.shift())){ //取出待执行队列中的第一个函数 直到全部执行完毕if(handler && handler.fulfilled){var res = handler.fulfilled.apply(self,args); //调用失败态回调函数if(res && res.isPromise){ //如果有二次嵌套 则再次执行promiseres.queue = promise.queue; self.promise = res;return; } } } },//失败态 reject:function(err){var self = this;var promise = self.promise;var args = arguments;var handler;while((handler = promise.queue.shift())){ //取出待执行队列中的第一个函数 直到全部执行完毕if(handler && handler.errored){ var res = handler.fulfilled.call(self,err); //调用完成态回调函数 } } } }
Summary
Key points:
① Each operation returns the same promise object, ensuring chain operations
② Function callback One parameter is always an error object. If there is no error, it is null
③ Each chain is connected through the then method and returns the promise object to be executed again
The above is the detailed content of Based on es6: asynchronous process control idea. For more information, please follow other related articles on the PHP Chinese website!

C and JavaScript achieve interoperability through WebAssembly. 1) C code is compiled into WebAssembly module and introduced into JavaScript environment to enhance computing power. 2) In game development, C handles physics engines and graphics rendering, and JavaScript is responsible for game logic and user interface.

JavaScript is widely used in websites, mobile applications, desktop applications and server-side programming. 1) In website development, JavaScript operates DOM together with HTML and CSS to achieve dynamic effects and supports frameworks such as jQuery and React. 2) Through ReactNative and Ionic, JavaScript is used to develop cross-platform mobile applications. 3) The Electron framework enables JavaScript to build desktop applications. 4) Node.js allows JavaScript to run on the server side and supports high concurrent requests.

Python is more suitable for data science and automation, while JavaScript is more suitable for front-end and full-stack development. 1. Python performs well in data science and machine learning, using libraries such as NumPy and Pandas for data processing and modeling. 2. Python is concise and efficient in automation and scripting. 3. JavaScript is indispensable in front-end development and is used to build dynamic web pages and single-page applications. 4. JavaScript plays a role in back-end development through Node.js and supports full-stack development.

C and C play a vital role in the JavaScript engine, mainly used to implement interpreters and JIT compilers. 1) C is used to parse JavaScript source code and generate an abstract syntax tree. 2) C is responsible for generating and executing bytecode. 3) C implements the JIT compiler, optimizes and compiles hot-spot code at runtime, and significantly improves the execution efficiency of JavaScript.

JavaScript's application in the real world includes front-end and back-end development. 1) Display front-end applications by building a TODO list application, involving DOM operations and event processing. 2) Build RESTfulAPI through Node.js and Express to demonstrate back-end applications.

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.

Understanding how JavaScript engine works internally is important to developers because it helps write more efficient code and understand performance bottlenecks and optimization strategies. 1) The engine's workflow includes three stages: parsing, compiling and execution; 2) During the execution process, the engine will perform dynamic optimization, such as inline cache and hidden classes; 3) Best practices include avoiding global variables, optimizing loops, using const and lets, and avoiding excessive use of closures.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Atom editor mac version download
The most popular open source editor

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.