


这篇文章主要介绍了Python实现读取并保存文件的类,涉及Python针对文件的读写操作相关实现技巧,需要的朋友可以参考下
本文实例讲述了Python实现读取并保存文件的类。分享给大家供大家参考,具体如下:
这个类写在一个叫class_format.py 的文件里, 放在D盘
>>> import os >>> os.chdir("D:\\") >>> os.getcwd() 'D:\\' >>> os.listdir(".") ......
有一个testcsv.txt 文件放在D盘,内容如下(oi的两边有空格):
1 100 3000 56 34 23 oi
这个代码的ReadData模块用到了csv.reader这个方法,delimiter='\n' 表示分隔符为换行符,quotechar=" " 表示引用字符为空格,quoting=csv.QUOTE_NONNUMERIC 表示,reader把未引用的区域转换为float类型, writer把非数值的字段用字符引用。
这个模块使用方法:
>>> from class_format import FormatData >>> myInstance = FormatData() >>> read_material = myInstance.ReadData("testcsv.txt") Data read! >>> read_material [1.0, 100.0, 3000.0, 56.0, 34.0, 23.0, 'oi'] >>> result = myInstance.SaveData("resultcsv.txt",read_material) Data saved!
这样testcsv.txt中的内容就被写入 resultcsv.txt文件中了
代码如下:
#!/usr/bin/python """ Chapter 15 of Beginning Programming With Python - For Dummies """ import csv class FormatData: def init(self, Name="",Age=0, Using_Vim=False): self.Name = Name self.Age = Age self.VimUser = Using_Vim def str(self): OutString = "'{0}', {1}, {2}".format(self.Name, self.Age, self.VimUser) return OutString def SaveData(self, Filename = "", DataList = []): with open(Filename, "w") as csvfile: DataWriter = csv.writer(csvfile, delimiter='\n',quotechar=" ",quoting=csv.QUOTE_NONNUMERIC) DataWriter.writerow(DataList) csvfile.close() print("Data saved!") def ReadData(self,Filename=""): with open(Filename, "r") as csvfile: DataReader = csv.reader(csvfile, delimiter='\n',quotechar=" ",quoting=csv.QUOTE_NONNUMERIC) Output = [] for Item in DataReader: Output.append(Item[0]) csvfile.close() print("Data read!") return Output
【相关推荐】
1. 特别推荐:“php程序员工具箱”V0.1版本下载
2. Python免费视频教程
The above is the detailed content of Python completes a detailed introduction to reading and saving file classes. For more information, please follow other related articles on the PHP Chinese website!

Arraysaregenerallymorememory-efficientthanlistsforstoringnumericaldataduetotheirfixed-sizenatureanddirectmemoryaccess.1)Arraysstoreelementsinacontiguousblock,reducingoverheadfrompointersormetadata.2)Lists,oftenimplementedasdynamicarraysorlinkedstruct

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

Python lists can store different types of data. The example list contains integers, strings, floating point numbers, booleans, nested lists, and dictionaries. List flexibility is valuable in data processing and prototyping, but it needs to be used with caution to ensure the readability and maintainability of the code.

Pythondoesnothavebuilt-inarrays;usethearraymoduleformemory-efficienthomogeneousdatastorage,whilelistsareversatileformixeddatatypes.Arraysareefficientforlargedatasetsofthesametype,whereaslistsofferflexibilityandareeasiertouseformixedorsmallerdatasets.

ThemostcommonlyusedmoduleforcreatingarraysinPythonisnumpy.1)Numpyprovidesefficienttoolsforarrayoperations,idealfornumericaldata.2)Arrayscanbecreatedusingnp.array()for1Dand2Dstructures.3)Numpyexcelsinelement-wiseoperationsandcomplexcalculationslikemea

ToappendelementstoaPythonlist,usetheappend()methodforsingleelements,extend()formultipleelements,andinsert()forspecificpositions.1)Useappend()foraddingoneelementattheend.2)Useextend()toaddmultipleelementsefficiently.3)Useinsert()toaddanelementataspeci

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

In the fields of finance, scientific research, medical care and AI, it is crucial to efficiently store and process numerical data. 1) In finance, using memory mapped files and NumPy libraries can significantly improve data processing speed. 2) In the field of scientific research, HDF5 files are optimized for data storage and retrieval. 3) In medical care, database optimization technologies such as indexing and partitioning improve data query performance. 4) In AI, data sharding and distributed training accelerate model training. System performance and scalability can be significantly improved by choosing the right tools and technologies and weighing trade-offs between storage and processing speeds.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver CS6
Visual web development tools

Atom editor mac version download
The most popular open source editor

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
