search
HomeBackend DevelopmentPython TutorialPython completes a detailed introduction to reading and saving file classes

这篇文章主要介绍了Python实现读取并保存文件的类,涉及Python针对文件的读写操作相关实现技巧,需要的朋友可以参考下

本文实例讲述了Python实现读取并保存文件的类。分享给大家供大家参考,具体如下:

这个类写在一个叫class_format.py 的文件里, 放在D盘

>>> import os
>>> os.chdir("D:\\")
>>> os.getcwd()
'D:\\'
>>> os.listdir(".")
......

有一个testcsv.txt 文件放在D盘,内容如下(oi的两边有空格):

1
100
3000
56
34
23
 oi

这个代码的ReadData模块用到了csv.reader这个方法,delimiter='\n' 表示分隔符为换行符,quotechar=" " 表示引用字符为空格,quoting=csv.QUOTE_NONNUMERIC 表示,reader把未引用的区域转换为float类型, writer把非数值的字段用字符引用。

这个模块使用方法:

>>> from class_format import FormatData
>>> myInstance = FormatData()
>>> read_material = myInstance.ReadData("testcsv.txt")
Data read!
>>> read_material
[1.0, 100.0, 3000.0, 56.0, 34.0, 23.0, 'oi']
>>> result = myInstance.SaveData("resultcsv.txt",read_material)
Data saved!

这样testcsv.txt中的内容就被写入 resultcsv.txt文件中了

代码如下:

#!/usr/bin/python
""" Chapter 15 of Beginning Programming With Python - For Dummies   """
import csv
class FormatData:
  def init(self, Name="",Age=0, Using_Vim=False):
    self.Name = Name
    self.Age = Age
    self.VimUser = Using_Vim
  def str(self):
    OutString = "'{0}', {1}, {2}".format(self.Name, self.Age, self.VimUser)
    return OutString
  def SaveData(self, Filename = "", DataList = []):
    with open(Filename, "w") as csvfile:
      DataWriter = csv.writer(csvfile, delimiter='\n',quotechar=" ",quoting=csv.QUOTE_NONNUMERIC)
      DataWriter.writerow(DataList)
      csvfile.close()
      print("Data saved!")
  def ReadData(self,Filename=""):
    with open(Filename, "r") as csvfile:
      DataReader = csv.reader(csvfile, delimiter='\n',quotechar=" ",quoting=csv.QUOTE_NONNUMERIC)
      Output = []
      for Item in DataReader:
        Output.append(Item[0])
      csvfile.close()
      print("Data read!")
      return Output

【相关推荐】

1. 特别推荐“php程序员工具箱”V0.1版本下载

2. Python免费视频教程

3. Python面向对象视频教程

The above is the detailed content of Python completes a detailed introduction to reading and saving file classes. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Why are arrays generally more memory-efficient than lists for storing numerical data?Why are arrays generally more memory-efficient than lists for storing numerical data?May 05, 2025 am 12:15 AM

Arraysaregenerallymorememory-efficientthanlistsforstoringnumericaldataduetotheirfixed-sizenatureanddirectmemoryaccess.1)Arraysstoreelementsinacontiguousblock,reducingoverheadfrompointersormetadata.2)Lists,oftenimplementedasdynamicarraysorlinkedstruct

How can you convert a Python list to a Python array?How can you convert a Python list to a Python array?May 05, 2025 am 12:10 AM

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

Can you store different data types in the same Python list? Give an example.Can you store different data types in the same Python list? Give an example.May 05, 2025 am 12:10 AM

Python lists can store different types of data. The example list contains integers, strings, floating point numbers, booleans, nested lists, and dictionaries. List flexibility is valuable in data processing and prototyping, but it needs to be used with caution to ensure the readability and maintainability of the code.

What is the difference between arrays and lists in Python?What is the difference between arrays and lists in Python?May 05, 2025 am 12:06 AM

Pythondoesnothavebuilt-inarrays;usethearraymoduleformemory-efficienthomogeneousdatastorage,whilelistsareversatileformixeddatatypes.Arraysareefficientforlargedatasetsofthesametype,whereaslistsofferflexibilityandareeasiertouseformixedorsmallerdatasets.

What module is commonly used to create arrays in Python?What module is commonly used to create arrays in Python?May 05, 2025 am 12:02 AM

ThemostcommonlyusedmoduleforcreatingarraysinPythonisnumpy.1)Numpyprovidesefficienttoolsforarrayoperations,idealfornumericaldata.2)Arrayscanbecreatedusingnp.array()for1Dand2Dstructures.3)Numpyexcelsinelement-wiseoperationsandcomplexcalculationslikemea

How do you append elements to a Python list?How do you append elements to a Python list?May 04, 2025 am 12:17 AM

ToappendelementstoaPythonlist,usetheappend()methodforsingleelements,extend()formultipleelements,andinsert()forspecificpositions.1)Useappend()foraddingoneelementattheend.2)Useextend()toaddmultipleelementsefficiently.3)Useinsert()toaddanelementataspeci

How do you create a Python list? Give an example.How do you create a Python list? Give an example.May 04, 2025 am 12:16 AM

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

Discuss real-world use cases where efficient storage and processing of numerical data are critical.Discuss real-world use cases where efficient storage and processing of numerical data are critical.May 04, 2025 am 12:11 AM

In the fields of finance, scientific research, medical care and AI, it is crucial to efficiently store and process numerical data. 1) In finance, using memory mapped files and NumPy libraries can significantly improve data processing speed. 2) In the field of scientific research, HDF5 files are optimized for data storage and retrieval. 3) In medical care, database optimization technologies such as indexing and partitioning improve data query performance. 4) In AI, data sharding and distributed training accelerate model training. System performance and scalability can be significantly improved by choosing the right tools and technologies and weighing trade-offs between storage and processing speeds.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.