


Detailed explanation of Python's method of reading and writing csv format files
Reading and writing csv format files with python
In data analysis, it is often necessary to access data from csv format files and write data to csv files. It is very convenient and trouble-free to directly read the data in the csv file into dict type and DataFrame. The following code takes iris data as an example.
The csv file is read as dict
Code
# -*- coding: utf-8 -*- import csv with open('E:/iris.csv') as csvfile: reader = csv.DictReader(csvfile, fieldnames=None) # fieldnames默认为None,如果所读csv文件没有表头,则需要指定 list_1 = [e for e in reader] # 每行数据作为一个dict存入链表中 csvfile.close() print list_1[0]
Output
{'Petal.Length': '1.4', 'Sepal.Length': '5.1', 'Petal.Width': '0.2', 'Sepal.Width': '3.5', 'Species': 'setosa'}
If each piece of data read needs to be processed separately and the amount of data is large, It is recommended to process them one by one and then put them in.
list_1 = list() for e in reader: list_1.append(your_func(e)) # your_func为每条数据的处理函数
Multiple pieces of data of type dict are written into csv files
Code
# 数据 data = [ {'Petal.Length': '1.4', 'Sepal.Length': '5.1', 'Petal.Width': '0.2', 'Sepal.Width': '3.5', 'Species': 'setosa'}, {'Petal.Length': '1.4', 'Sepal.Length': '4.9', 'Petal.Width': '0.2', 'Sepal.Width': '3', 'Species': 'setosa'}, {'Petal.Length': '1.3', 'Sepal.Length': '4.7', 'Petal.Width': '0.2', 'Sepal.Width': '3.2', 'Species': 'setosa'}, {'Petal.Length': '1.5', 'Sepal.Length': '4.6', 'Petal.Width': '0.2', 'Sepal.Width': '3.1', 'Species': 'setosa'} ] # 表头 header = ['Petal.Length', 'Sepal.Length', 'Petal.Width', 'Sepal.Width', 'Species'] print len(data) with open('E:/dst.csv', 'wb') as dstfile: #写入方式选择wb,否则有空行 writer = csv.DictWriter(dstfile, fieldnames=header) writer.writeheader() # 写入表头 writer.writerows(data) # 批量写入 dstfile.close()
The above code writes the entire data into the csv file. If the amount of data is large and you want to real-time To see how much data has been written, use the writerows function.
Read csv file into DataFrame
Code
# 读取csv文件为DataFrame import pandas as pd dframe = pd.DataFrame.from_csv('E:/iris.csv')
You can also twist it a little:
import csv import pandas as pd with open('E:/iris.csv') as csvfile: reader = csv.DictReader(csvfile, fieldnames=None) # fieldnames默认为None,如果所读csv文件没有表头,则需要指定 list_1 = [e for e in reader] # 每行数据作为一个dict存入链表中 csvfile.close() dfrme = pd.DataFrame.from_records(list_1)
DataFrame writes into csv file
dfrme.to_csv('E:/dst.csv', index=False) # 不要每行的编号
The above is the detailed content of Detailed explanation of Python's method of reading and writing csv format files. For more information, please follow other related articles on the PHP Chinese website!

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

Forloopsareadvantageousforknowniterationsandsequences,offeringsimplicityandreadability;whileloopsareidealfordynamicconditionsandunknowniterations,providingcontrolovertermination.1)Forloopsareperfectforiteratingoverlists,tuples,orstrings,directlyacces

Pythonusesahybridmodelofcompilationandinterpretation:1)ThePythoninterpretercompilessourcecodeintoplatform-independentbytecode.2)ThePythonVirtualMachine(PVM)thenexecutesthisbytecode,balancingeaseofusewithperformance.

Pythonisbothinterpretedandcompiled.1)It'scompiledtobytecodeforportabilityacrossplatforms.2)Thebytecodeistheninterpreted,allowingfordynamictypingandrapiddevelopment,thoughitmaybeslowerthanfullycompiledlanguages.

Forloopsareidealwhenyouknowthenumberofiterationsinadvance,whilewhileloopsarebetterforsituationswhereyouneedtoloopuntilaconditionismet.Forloopsaremoreefficientandreadable,suitableforiteratingoversequences,whereaswhileloopsoffermorecontrolandareusefulf

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Dreamweaver CS6
Visual web development tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Mac version
God-level code editing software (SublimeText3)
