python简介
Python是一种解释型、面向对象、动态数据类型的高级程序设计语言。
Python由Guido van Rossum于1989年底发明,第一个公开发行版发行于1991年。
像Perl语言一样, Python 源代码同样遵循 GPL(GNU General Public License)协议。
>>> import os >>> for i in os.walk("."): ... print i[0],"\n##",i[1],"\n##",i[2] ... . #当前目录 ## ['fa', 'out'] #当前目录中的子目录 ## ['meta_rna.sh', 'nohup.out', 'log.cpu', 'blast_seq.py'] ./fa # 第一个子目录 ## [] # 第一个子目录中的目录 ## ['assemblyar_new_2.faa'] ./out # 第二个子目录 ## [] # 第二个子目录中的目录 ## ['assemblyar_new_2.faa.coord', 'assemblyar_new_2.faa.mask', 'assemblyar_new_2.faa.seq', 'result_1.xm', 'result.xml', 'blast_seq.py']
也可以用 os.path.walk, 先定义一个访问文件夹的函数, VisitDir
>>> def VisitDir(arg, dirname, names): ... for filespath in names: ... print os.path.join(dirname, filespath) ... >>> path="." >>> os.path.walk(path, VisitDir, ()) ./meta_rna.sh ./fa ./out ./nohup.out ./log.cpu ./blast_seq.py ./fa/assemblyar_new_2.faa ./out/assemblyar_new_2.faa.coord ./out/assemblyar_new_2.faa.mask ./out/assemblyar_new_2.faa.seq ./out/result_1.xm ./out/result.xml ./out/blast_seq.py >>> os.getcwd() '/home/served_pro/Find_nick' >>> abs_path= os.getcwd() >>> os.path.walk(abs_path, VisitDir, ()) /home/served_pro/Find_nick/meta_rna.sh /home/served_pro/Find_nick/fa /home/served_pro/Find_nick/out /home/served_pro/Find_nick/nohup.out /home/served_pro/Find_nick/log.cpu /home/served_pro/Find_nick/blast_seq.py /home/served_pro/Find_nick/fa/assemblyar_new_2.faa /home/served_pro/Find_nick/out/assemblyar_new_2.faa.coord /home/served_pro/Find_nick/out/assemblyar_new_2.faa.mask /home/served_pro/Find_nick/out/assemblyar_new_2.faa.seq /home/served_pro/Find_nick/out/result_1.xm /home/served_pro/Find_nick/out/result.xml /home/served_pro/Find_nick/out/blast_seq.py
下面给大家介绍python列出文件夹下的所有文件
#方法1:使用os.listdir import os for filename in os.listdir(r'c:\\windows'): print filename #方法2:使用glob模块,可以设置文件过滤 import glob for filename in glob.glob(r'c:\\windows\\*.exe'): print filename #方法3:通过os.path.walk递归遍历,可以访问子文件夹 import os.path def processDirectory ( args, dirname, filenames ): print 'Directory',dirname for filename in filenames: print ' File',filename os.path.walk(r'c:\\windows', processDirectory, None ) #方法4:非递归 import os for dirpath, dirnames, filenames in os.walk('c:\\\\winnt'): print 'Directory', dirpath for filename in filenames: print ' File', filename
另外,判断文件与目录是否存在:
import os os.path.isfile('test.txt') #如果不存在就返回False os.path.exists(directory) #如果目录不存在就返回False
以上所述是小编给大家介绍的Python列出一个文件夹及其子目录的所有文件,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对PHP中文网的支持!
更多Python列出一个文件夹及其子目录的所有文件相关文章请关注PHP中文网!

Pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)Theyarestoredincontiguousmemoryblocks,whichmayrequirereallocationwhenappendingitems,impactingperformance.2)Linkedlistswouldofferefficientinsertions/deletionsbutslowerindexedaccess,leadingPytho

Pythonoffersfourmainmethodstoremoveelementsfromalist:1)remove(value)removesthefirstoccurrenceofavalue,2)pop(index)removesandreturnsanelementataspecifiedindex,3)delstatementremoveselementsbyindexorslice,and4)clear()removesallitemsfromthelist.Eachmetho

Toresolvea"Permissiondenied"errorwhenrunningascript,followthesesteps:1)Checkandadjustthescript'spermissionsusingchmod xmyscript.shtomakeitexecutable.2)Ensurethescriptislocatedinadirectorywhereyouhavewritepermissions,suchasyourhomedirectory.

ArraysarecrucialinPythonimageprocessingastheyenableefficientmanipulationandanalysisofimagedata.1)ImagesareconvertedtoNumPyarrays,withgrayscaleimagesas2Darraysandcolorimagesas3Darrays.2)Arraysallowforvectorizedoperations,enablingfastadjustmentslikebri

Arraysaresignificantlyfasterthanlistsforoperationsbenefitingfromdirectmemoryaccessandfixed-sizestructures.1)Accessingelements:Arraysprovideconstant-timeaccessduetocontiguousmemorystorage.2)Iteration:Arraysleveragecachelocalityforfasteriteration.3)Mem

Arraysarebetterforelement-wiseoperationsduetofasteraccessandoptimizedimplementations.1)Arrayshavecontiguousmemoryfordirectaccess,enhancingperformance.2)Listsareflexiblebutslowerduetopotentialdynamicresizing.3)Forlargedatasets,arrays,especiallywithlib

Mathematical operations of the entire array in NumPy can be efficiently implemented through vectorized operations. 1) Use simple operators such as addition (arr 2) to perform operations on arrays. 2) NumPy uses the underlying C language library, which improves the computing speed. 3) You can perform complex operations such as multiplication, division, and exponents. 4) Pay attention to broadcast operations to ensure that the array shape is compatible. 5) Using NumPy functions such as np.sum() can significantly improve performance.

In Python, there are two main methods for inserting elements into a list: 1) Using the insert(index, value) method, you can insert elements at the specified index, but inserting at the beginning of a large list is inefficient; 2) Using the append(value) method, add elements at the end of the list, which is highly efficient. For large lists, it is recommended to use append() or consider using deque or NumPy arrays to optimize performance.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Notepad++7.3.1
Easy-to-use and free code editor
