This article mainly introduces the relevant information of java synchronization, asynchronous, blocking and non-blocking analysis. Friends who need it can refer to
java synchronization, asynchronous, blocking and non-blocking analysis
Summary:
Under normal circumstances, our program runs in a synchronous and non-blocking manner. However, our programs will always have some time-consuming operations, such as complex calculations (finding prime numbers between 1 and 1 billion) and operations that the program itself cannot control (IO operations, network requests). Methods that include these time-consuming operations can be called blocking methods, and tasks that include these time-consuming operations can be called blocking tasks. Blocking and non-blocking are defined by whether they take time.
If there are a large number of blocking operations in the program, it will affect program performance. But the existence of blocking is an objective fact, and our program cannot change it. A network request takes 3 seconds to respond. It is impossible for us to make it respond in 1 millisecond, because the server that accepts the request may be completely out of our control. But we can change the way we handle blocking - handle blocking tasks asynchronously. The main technology to achieve asynchronous is multi-threading. Illustration:
# Synchronization and asynchronousness are timing concepts. Synchronization means executing only one task at the same time, while asynchronous means executing multiple tasks at the same time.
Code example
Simulated network request:
package com.zzj.asyn; public class HttpRequest { private Callable callable; public HttpRequest(Callable callable) { this.callable = callable; } public void send(){ // 模拟网络请求 try { Thread.sleep(1000 * 5); } catch (InterruptedException e) { e.printStackTrace(); Thread.currentThread().interrupt(); } // 回调 this.callable.call("Hello world!"); } public interface Callable{ void call(String result); } }
Handle blocking tasks synchronously:
package com.zzj.asyn; import com.zzj.asyn.HttpRequest.Callable; /** * 以同步的方式处理阻塞任务 * @author lenovo * */ public class App { public static void main(String[] args) { new HttpRequest(new Callable() { @Override public void call(String result) { System.out.println("Thread:" + Thread.currentThread().getName()); System.out.println("Message from remote server:" + result); } }).send(); System.out.println("Thread " + Thread.currentThread().getName() + " is over!"); } }
Result:
Thread:main Message from remote server:Hello world! Thread main is over!
Process blocking tasks asynchronously:
package com.zzj.asyn; import com.zzj.asyn.HttpRequest.Callable; /** * 以异步的方式处理阻塞任务 * @author lenovo * */ public class App2 { public static void main(String[] args) { new Thread(new Runnable() { @Override public void run() { new HttpRequest(new Callable() { @Override public void call(String result) { System.out.println("Thread:" + Thread.currentThread().getName()); System.out.println("Message from remote server:" + result); } }).send(); } }).start(); System.out.println("Thread " + Thread.currentThread().getName() + " is over!"); } }
Result:
Thread main is over! Thread:Thread-0 Message from remote server:Hello world!
Thank you for reading, I hope it can help everyone, thank you for your support of this site!
For more articles related to java synchronization, asynchronous, blocking and non-blocking analysis, please pay attention to the PHP Chinese website!

Javadevelopmentisnotentirelyplatform-independentduetoseveralfactors.1)JVMvariationsaffectperformanceandbehavioracrossdifferentOS.2)NativelibrariesviaJNIintroduceplatform-specificissues.3)Filepathsandsystempropertiesdifferbetweenplatforms.4)GUIapplica

Java code will have performance differences when running on different platforms. 1) The implementation and optimization strategies of JVM are different, such as OracleJDK and OpenJDK. 2) The characteristics of the operating system, such as memory management and thread scheduling, will also affect performance. 3) Performance can be improved by selecting the appropriate JVM, adjusting JVM parameters and code optimization.

Java'splatformindependencehaslimitationsincludingperformanceoverhead,versioncompatibilityissues,challengeswithnativelibraryintegration,platform-specificfeatures,andJVMinstallation/maintenance.Thesefactorscomplicatethe"writeonce,runanywhere"

Platformindependenceallowsprogramstorunonanyplatformwithoutmodification,whilecross-platformdevelopmentrequiressomeplatform-specificadjustments.Platformindependence,exemplifiedbyJava,enablesuniversalexecutionbutmaycompromiseperformance.Cross-platformd

JITcompilationinJavaenhancesperformancewhilemaintainingplatformindependence.1)Itdynamicallytranslatesbytecodeintonativemachinecodeatruntime,optimizingfrequentlyusedcode.2)TheJVMremainsplatform-independent,allowingthesameJavaapplicationtorunondifferen

Javaispopularforcross-platformdesktopapplicationsduetoits"WriteOnce,RunAnywhere"philosophy.1)ItusesbytecodethatrunsonanyJVM-equippedplatform.2)LibrarieslikeSwingandJavaFXhelpcreatenative-lookingUIs.3)Itsextensivestandardlibrarysupportscompr

Reasons for writing platform-specific code in Java include access to specific operating system features, interacting with specific hardware, and optimizing performance. 1) Use JNA or JNI to access the Windows registry; 2) Interact with Linux-specific hardware drivers through JNI; 3) Use Metal to optimize gaming performance on macOS through JNI. Nevertheless, writing platform-specific code can affect the portability of the code, increase complexity, and potentially pose performance overhead and security risks.

Java will further enhance platform independence through cloud-native applications, multi-platform deployment and cross-language interoperability. 1) Cloud native applications will use GraalVM and Quarkus to increase startup speed. 2) Java will be extended to embedded devices, mobile devices and quantum computers. 3) Through GraalVM, Java will seamlessly integrate with languages such as Python and JavaScript to enhance cross-language interoperability.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Atom editor mac version download
The most popular open source editor

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 English version
Recommended: Win version, supports code prompts!

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.
