search
HomeBackend DevelopmentC#.Net Tutorial.NET Factory Method Pattern Explanation

Introduction to the Factory Method Pattern:

The meaning of the Factory Method pattern is to define a factory interface that creates product objects, deferring the actual creation work to subclasses. The core factory class is no longer responsible for the creation of products. In this way, the core class becomes an abstract factory role, responsible only for the interfaces that specific factory subclasses must implement. The benefit of further abstraction is that the factory method pattern allows the system to operate without modifying the specific factory role. Introducing new products.

Factory method pattern structure diagram:

.NET Factory Method Pattern Explanation

Role classification:

Abstract factory role: It is the core of the factory method pattern and has nothing to do with the application. Any factory class for objects created in the pattern must implement this interface.
Concrete Factory Role: This is a concrete factory class that implements the Abstract Factory interface, contains logic closely related to the application, and is called by the application to create product objects
Abstract Product Role: The super type of the object created by the Factory Method pattern, That is, the common parent class or commonly owned interface of product objects. In the picture above, this character is Light.
Concrete product role: This role implements the interface defined by the abstract product role. A specific product is created by a specific factory, and there is often a one-to-one correspondence between them.

Introducing practical examples:

In the previous blog post Simple Factory Pattern, the following implementation was implemented using the simple factory pattern: If there is a tenant management system, the tenant types in it are variable, and the rent of each tenant type is There are differences in the calculation formulas. For example: the rent amount for type A residents = number of days * unit price + performance * 0.005; the rent amount for type B residents = month * (monthly price + performance * 0.001) Although we have achieved the customer's needs here, but If the customer later needs to add a C-type store and a D-type store, and their algorithm requirements are different, at this time we need to create C and D-type stores, inherit the Ishop interface, implement the methods inside, and also need to Continue to modify the factory class and add cases in switch to capture and create corresponding store objects. Once such a situation occurs, it will be detrimental to the scalability of the program and the maintenance of the project later.

1. Analysis: Stores have common behavioral characteristics and must perform store rent calculation behavior. We abstracted Ishop, which contains the behavior of calculating store rent method to be implemented.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
 
namespace FactoryEntiy
{
  public interface Ishop
  {
    double Getrent(int days, double dayprice, double performance);
  }
}

2. We implement the methods in the Isho interface and create type A and B stores.

using FactoryEntiy;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
 
namespace ProductEnity
{
  /// <summary>
  /// 继承商店接口,实现里面的行为方法,即算法
  /// </summary>
  public class Ashop:Ishop
  {
    /// <summary>
    /// /// A类型商店租金额,天数*单价+绩效*0.005
    /// </summary>
    /// <param name="days">天数</param>
    /// <param name="dayprice">每天单价</param>
    /// <param name="performance">日平均绩效</param>
    /// <returns></returns>
    public double Getrent(int days, double dayprice, double performance)
    {
      Console.WriteLine("A商店的租金算法");
      return days * dayprice + performance * 0.01;
    }
  }
}
using FactoryEntiy;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
 
namespace ProductEnity
{
  /// <summary>
  /// 继承商店接口,实现里面的行为方法,即算法
  /// </summary>
  public class Bshop:Ishop
  {
    /// <summary>
    /// B类型商店的租金=月份*(每月价格+performance*0.001)
    /// </summary>
    /// <param name="month">月数</param>
    /// <param name="monthprice">月单价</param>
    /// <param name="performance">月平均绩效</param>
    /// <returns></returns>
    public double Getrent(int month, double monthprice, double performance)
    {
      Console.WriteLine("B商店的租金算法");
      return month * (monthprice + performance * 0.001);
    }
  }
}

3. Now consider the circumstances under which to create store entities, calculate rents for different stores, and facilitate future additions and modifications. So we create the IFactroy interface, which contains methods to create store objects to be implemented.

using FactoryEntiy;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
 
namespace FactoryMethod
{
  /// <summary>
  /// 工厂类,创建商店类型实体
  /// </summary>
  public interface IFactory
  {
    Ishop CreateShop();
  }
}

4. Now we can inherit from IFactory and create the corresponding store object in it.

using FactoryEntiy;
using FactoryMethod;
using ProductEnity;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
 
namespace ProductEnity
{
  /// <summary>
  /// 继承工厂类,创建A类型商店实体
  /// </summary>
  public class CreateBshop : IFactory
  {
    public Ishop CreateShop()
    {
      return new Ashop();
    }
  }
}
using FactoryEntiy;
using FactoryMethod;
using ProductEnity;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
 
namespace ProductEnity
{
  /// <summary>
  /// 继承工厂类,创建B类型商店实体
  /// </summary>
  public class CreateAshop : IFactory
  {
    public Ishop CreateShop()
    {
      return new Bshop();
    }
  }
}

5. Then judge based on the current store type, which algorithm should be used for this type of store:

using FactoryEntiy;
using System;
using System.Collections.Generic;
using System.Configuration;
using System.Linq;
using System.Reflection;
using System.Text;
 
namespace FactoryMethod.App
{
  class Program
  {
    static void Main(string[] args)
    {
      string shopname = ConfigurationManager.AppSettings["CreateShopClassName"];
      //shopname为创建商店类名称,此处=CreateAshop
      IFactory af = (IFactory)Assembly.Load("ProductEnity").CreateInstance("ProductEnity." + shopname);
      //第一个ProductEnity是dll的名称,第二个ProductEnity是项目的命名空间。
      Ishop As = af.CreateShop(); double total = As.Getrent(30, 300, 2000); //30 天/100元 日平均绩效为2000 
      Console.WriteLine("该A类型商店的租金为:" + total); 
       
      Console.WriteLine("=============");
      IFactory bf = (IFactory)Assembly.Load("ProductEnity").CreateInstance("ProductEnity." + "CreateBshop");
      //CreateBshop可以保存为配置或者存在数据库中,
      //注意该保存字符串应该与项目中创建的类名一样,
      //否则反射的方式会找不到该项目下的类。
      Ishop Bs = bf.CreateShop(); total = Bs.Getrent(30, 300, 2000); //30 天/100元 日平均绩效为2000
      Console.WriteLine("该A类型商店的租金为:" + total);
    }
  }
}

Here we use reflection to create objects, replacing the previous factory class's way of creating objects through switch. It will be helpful for the subsequent addition of new types of stores and algorithm modifications, additions and maintenance. When project requirements change, we only need to add C and D type stores to the project again, inherit the methods in Ishop implementation, and at the same time, add inheritance of the IFactroy interface. Create the corresponding store object and compile the ProductEnity.dll of the project. Later, the C and D type store algorithms can be calculated through reflection without modifying the original engineering code.


The above is the entire content of this article. I hope it will be helpful to everyone’s study. I also hope that everyone will support the php Chinese website.

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
C# .NET: An Introduction to the Powerful Programming LanguageC# .NET: An Introduction to the Powerful Programming LanguageApr 22, 2025 am 12:04 AM

The combination of C# and .NET provides developers with a powerful programming environment. 1) C# supports polymorphism and asynchronous programming, 2) .NET provides cross-platform capabilities and concurrent processing mechanisms, which makes them widely used in desktop, web and mobile application development.

.NET Framework vs. C#: Decoding the Terminology.NET Framework vs. C#: Decoding the TerminologyApr 21, 2025 am 12:05 AM

.NETFramework is a software framework, and C# is a programming language. 1..NETFramework provides libraries and services, supporting desktop, web and mobile application development. 2.C# is designed for .NETFramework and supports modern programming functions. 3..NETFramework manages code execution through CLR, and the C# code is compiled into IL and runs by CLR. 4. Use .NETFramework to quickly develop applications, and C# provides advanced functions such as LINQ. 5. Common errors include type conversion and asynchronous programming deadlocks. VisualStudio tools are required for debugging.

Demystifying C# .NET: An Overview for BeginnersDemystifying C# .NET: An Overview for BeginnersApr 20, 2025 am 12:11 AM

C# is a modern, object-oriented programming language developed by Microsoft, and .NET is a development framework provided by Microsoft. C# combines the performance of C and the simplicity of Java, and is suitable for building various applications. The .NET framework supports multiple languages, provides garbage collection mechanisms, and simplifies memory management.

C# and the .NET Runtime: How They Work TogetherC# and the .NET Runtime: How They Work TogetherApr 19, 2025 am 12:04 AM

C# and .NET runtime work closely together to empower developers to efficient, powerful and cross-platform development capabilities. 1) C# is a type-safe and object-oriented programming language designed to integrate seamlessly with the .NET framework. 2) The .NET runtime manages the execution of C# code, provides garbage collection, type safety and other services, and ensures efficient and cross-platform operation.

C# .NET Development: A Beginner's Guide to Getting StartedC# .NET Development: A Beginner's Guide to Getting StartedApr 18, 2025 am 12:17 AM

To start C#.NET development, you need to: 1. Understand the basic knowledge of C# and the core concepts of the .NET framework; 2. Master the basic concepts of variables, data types, control structures, functions and classes; 3. Learn advanced features of C#, such as LINQ and asynchronous programming; 4. Be familiar with debugging techniques and performance optimization methods for common errors. With these steps, you can gradually penetrate the world of C#.NET and write efficient applications.

C# and .NET: Understanding the Relationship Between the TwoC# and .NET: Understanding the Relationship Between the TwoApr 17, 2025 am 12:07 AM

The relationship between C# and .NET is inseparable, but they are not the same thing. C# is a programming language, while .NET is a development platform. C# is used to write code, compile into .NET's intermediate language (IL), and executed by the .NET runtime (CLR).

The Continued Relevance of C# .NET: A Look at Current UsageThe Continued Relevance of C# .NET: A Look at Current UsageApr 16, 2025 am 12:07 AM

C#.NET is still important because it provides powerful tools and libraries that support multiple application development. 1) C# combines .NET framework to make development efficient and convenient. 2) C#'s type safety and garbage collection mechanism enhance its advantages. 3) .NET provides a cross-platform running environment and rich APIs, improving development flexibility.

From Web to Desktop: The Versatility of C# .NETFrom Web to Desktop: The Versatility of C# .NETApr 15, 2025 am 12:07 AM

C#.NETisversatileforbothwebanddesktopdevelopment.1)Forweb,useASP.NETfordynamicapplications.2)Fordesktop,employWindowsFormsorWPFforrichinterfaces.3)UseXamarinforcross-platformdevelopment,enablingcodesharingacrossWindows,macOS,Linux,andmobiledevices.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools