


Example 1
We are going to request five different URLs:
Single threaded
import time import urllib2 defget_responses(): urls=[ ‘http://www.baidu.com', ‘http://www.amazon.com', ‘http://www.ebay.com', ‘http://www.alibaba.com', ‘http://www.jb51.net' ] start=time.time() forurlinurls: printurl resp=urllib2.urlopen(url) printresp.getcode() print”Elapsed time: %s”%(time.time()-start) get_responses()
The output is:
http://www.baidu.com200
http://www.amazon.com200
http://www.ebay .com200
http://www.alibaba.com200
http://www.jb51.net200
Elapsed
time:3.0814409256
Explanation:
urls are requested in order
Unless the cpu gets a response from one url, it will not request the next url
The network request will take a long time, so the cpu is waiting for the return time of the network request has been idle.
Multi-threading
import urllib2 import time from threading import Thread classGetUrlThread(Thread): def__init__(self, url): self.url=url super(GetUrlThread,self).__init__() defrun(self): resp=urllib2.urlopen(self.url) printself.url, resp.getcode() defget_responses(): urls=[ ‘http://www.baidu.com', ‘http://www.amazon.com', ‘http://www.ebay.com', ‘http://www.alibaba.com', ‘http://www.jb51.net' ] start=time.time() threads=[] forurlinurls: t=GetUrlThread(url) threads.append(t) t.start() fortinthreads: t.join() print”Elapsed time: %s”%(time.time()-start) get_responses()
Output:
http://www.jb51.net200
http://www.baidu.com200
http://www.amazon.com200
http://www.alibaba.com200
http ://www.ebay.com200
Elapsed
time:0.689890861511
Explanation:
Aware of the improvement in program execution time
We wrote a multi-threaded program to reduce the waiting time of the CPU. When we are waiting for a network request in a thread to return, the CPU can Switch to other threads to make network requests in other threads.
We expect one thread to process one url, so we pass a url when instantiating the thread class.
Thread running means executing the run() method in the class.
No matter what, we want each thread to execute run().
Create a thread for each URL and call the start() method, which tells the CPU to execute the run() method in the thread.
We want to calculate the time spent when all threads have finished executing, so we call the join() method.
join() can notify the main thread to wait for this thread to end before executing the next instruction.
We called the join() method on each thread, so we calculated the running time after all threads have completed execution.
About threads:
cpu may not execute the run() method immediately after calling start().
You cannot determine the execution order of run() among different threads.
For a single thread, it is guaranteed that the statements in the run() method are executed in order.
This is because the url in the thread will be requested first, and then the returned result will be printed.
Example 2
We will use a program to demonstrate resource competition between multi-threads and fix this problem.
from threading import Thread #define a global variable some_var=0 classIncrementThread(Thread): defrun(self): #we want to read a global variable #and then increment it globalsome_var read_value=some_var print”some_var in %s is %d”%(self.name, read_value) some_var=read_value+1 print”some_var in %s after increment is %d”%(self.name, some_var) defuse_increment_thread(): threads=[] foriinrange(50): t=IncrementThread() threads.append(t) t.start() fortinthreads: t.join() print”After 50 modifications, some_var should have become 50″ print”After 50 modifications, some_var is %d”%(some_var,) use_increment_thread()
Run this program multiple times and you will see a variety of different results.
Explanation:
There is a global variable and all threads want to modify it.
All threads should add this global variable
1
.
With 50 threads, the final value should become 50, but it does not.
Why didn’t it reach 50?
When some_var is 15, thread t1 reads some_var. At this time, the CPU gives control to another thread t2.
The some_var read by the t2 thread is also 15
Both t1 and t2 increase some_var to 16
What we expected at that time was t1
t2 two threads make some_var +
2 becomes 17
There is competition for resources here.
The same situation may also occur in other threads, so the final result may be less than 50.
Resolving resource competition
from threading import Lock, Thread lock=Lock() some_var=0 classIncrementThread(Thread): defrun(self): #we want to read a global variable #and then increment it globalsome_var lock.acquire() read_value=some_var print”some_var in %s is %d”%(self.name, read_value) some_var=read_value+1 print”some_var in %s after increment is %d”%(self.name, some_var) lock.release() defuse_increment_thread(): threads=[] foriinrange(50): t=IncrementThread() threads.append(t) t.start() fortinthreads: t.join() print”After 50 modifications, some_var should have become 50″ print”After 50 modifications, some_var is %d”%(some_var,) use_increment_thread()
Running the program again achieved the results we expected.
Explanation:
Lock
Used to prevent race conditions
If thread t1 acquires the lock before performing some operations. Other threads will not perform the same operation before t1 releases the Lock
What we want to make sure is that once thread t1 has read some_var, other threads can not read some_var until t1 has finished modifying some_var
Read like this And modifying some_var becomes a logical atomic operation.
Example 3
Let us use an example to prove that one thread cannot affect variables (non-global variables) in other threads.
time.sleep() can suspend a thread and force thread switching to occur.
from threading import Thread import time classCreateListThread(Thread): defrun(self): self.entries=[] foriinrange(10): time.sleep(1) self.entries.append(i) printself.entries defuse_create_list_thread(): foriinrange(3): t=CreateListThread() t.start() use_create_list_thread()
After running it a few times, I found that the results I was striving for were not printed out. While one thread is printing, the CPU switches to another thread, so incorrect results are produced. We need to make sure to print
self.entries is a logical atomic operation to prevent printing from being interrupted by other threads.
We used Lock(), look at the example below.
from threading import Thread, Lock import time lock=Lock() classCreateListThread(Thread): defrun(self): self.entries=[] foriinrange(10): time.sleep(1) self.entries.append(i) lock.acquire() printself.entries lock.release() defuse_create_list_thread(): foriinrange(3): t=CreateListThread() t.start() use_create_list_thread()
This time we saw the correct results. It proves that one thread cannot modify the internal variables (non-global variables) of other threads.

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Atom editor mac version download
The most popular open source editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.
