


Decorated functions and methods
We first define two simple mathematical functions, one for calculating the sum of squares and one for calculating the difference of squares:
# get square sum def square_sum(a, b): return a**2 + b**2 # get square diff def square_diff(a, b): return a**2 - b**2 print(square_sum(3, 4)) print(square_diff(3, 4))
After having basic mathematical functions, we may want to add other functions to the function, such as printing input. We can rewrite the function to achieve this:
# modify: print input # get square sum def square_sum(a, b): print("intput:", a, b) return a**2 + b**2 # get square diff def square_diff(a, b): print("input", a, b) return a**2 - b**2 print(square_sum(3, 4)) print(square_diff(3, 4))
We have modified the definition of the function and added functions to the function.
Now, we use a decorator to implement the above modifications:
def decorator(F): def new_F(a, b): print("input", a, b) return F(a, b) return new_F # get square sum @decorator def square_sum(a, b): return a**2 + b**2 # get square diff @decorator def square_diff(a, b): return a**2 - b**2 print(square_sum(3, 4)) print(square_diff(3, 4))
Decorators can be defined in the form of def, such as decorator in the above code. The decorator receives a callable object as an input parameter and returns a new callable object. The decorator creates a new callable object, which is new_F above. In new_F, we added the printing function and implemented the functions of the original function by calling F(a, b).
After defining the decorator, we can use it through the @ syntax. By calling @decorator before the functions square_sum and square_diff are defined, we actually pass square_sum or square_diff to the decorator, and assign the new callable object returned by the decorator to the original function name (square_sum or square_diff). So, when we call square_sum(3, 4), it is equivalent to:
square_sum = decorator(square_sum) square_sum(3, 4)
We know that variable names and objects in Python are separated. Variable names can point to any object. In essence, the decorator plays the role of re-pointing to the variable name (name binding), allowing the same variable name to point to a newly returned callable object, thereby achieving the purpose of modifying the callable object.
Similar to processing functions, we can use decorators to process class methods.
If we have other similar functions, we can continue to call decorator to decorate the function without repeatedly modifying the function or adding new packages. In this way, we improve the reusability of the program and increase the readability of the program.
Decorator with parameters
In the above decorator call, such as @decorator, the decorator defaults to the function following it as the only parameter. The syntax of decorators allows us to provide other parameters when calling decorator, such as @decorator(a). This provides greater flexibility in writing and using decorators.
# a new wrapper layer def pre_str(pre=''): # old decorator def decorator(F): def new_F(a, b): print(pre + "input", a, b) return F(a, b) return new_F return decorator # get square sum @pre_str('^_^') def square_sum(a, b): return a**2 + b**2 # get square diff @pre_str('T_T') def square_diff(a, b): return a**2 - b**2 print(square_sum(3, 4)) print(square_diff(3, 4))
The pre_str above is a decorator that allows parameters. It is actually a function encapsulation of the original decorator and returns a decorator. We can understand it as a closure containing environmental parameters. When we call using @pre_str('^_^'), Python can discover this layer of encapsulation and pass the parameters to the decorator environment. This call is equivalent to:
square_sum = pre_str('^_^') (square_sum)
Decoration
In the above example, the decorator receives a function and returns a function, thus achieving the effect of processing the function. After Python 2.6, decorators were extended to classes. A decorator can receive a class and return a class, thus having the effect of processing the class.
def decorator(aClass): class newClass: def __init__(self, age): self.total_display = 0 self.wrapped = aClass(age) def display(self): self.total_display += 1 print("total display", self.total_display) self.wrapped.display() return newClass @decorator class Bird: def __init__(self, age): self.age = age def display(self): print("My age is",self.age) eagleLord = Bird(5) for i in range(3): eagleLord.display()
In decorator, we return a new class newClass. In the new class, we record the object (self.wrapped) generated by the original class, and attach a new attribute total_display to record the number of times display is called. We also changed the display method at the same time.
After modification, our Bird class can display the number of times display is called.

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

WebStorm Mac version
Useful JavaScript development tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
