Home >Backend Development >PHP Tutorial >PHP implementation of AES256 encryption algorithm example_PHP tutorial

PHP implementation of AES256 encryption algorithm example_PHP tutorial

WBOY
WBOYOriginal
2016-07-13 10:18:361039browse

Example of PHP implementing AES256 encryption algorithm

This article describes the example of PHP implementing AES256 encryption algorithm, which is a relatively common encryption algorithm. Share it with everyone for your reference. The details are as follows:

aes.class.php file is as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

/* AES implementation in PHP (c) Chris Veness 2005-2011. Right of free use is granted for all */

/* commercial or non-commercial use under CC-BY license. No warranty of any form is offered. */

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

class Aes {

/**

* AES Cipher function: encrypt 'input' with Rijndael algorithm

*

* @param input message as byte-array (16 bytes)

  * @param w   key schedule as 2D byte-array (Nr+1 x Nb bytes) - 

  *       generated from the cipher key by keyExpansion() 

  * @return   ciphertext as byte-array (16 bytes) 

  */ 

 public static function cipher($input, $w) {  // main cipher function [§5.1] 

  $Nb = 4;         // block size (in words): no of columns in state (fixed at 4 for AES) 

  $Nr = count($w)/$Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys 

    

  $state = array(); // initialise 4xNb byte-array 'state' with input [§3.4] 

  for ($i=0; $i<4*$Nb; $i++) $state[$i%4][floor($i/4)] = $input[$i]; 

    

  $state = self::addRoundKey($state, $w, 0, $Nb); 

    

  for ($round=1; $round<$Nr; $round++) { // apply Nr rounds 

   $state = self::subBytes($state, $Nb); 

   $state = self::shiftRows($state, $Nb); 

   $state = self::mixColumns($state, $Nb); 

   $state = self::addRoundKey($state, $w, $round, $Nb); 

  } 

    

  $state = self::subBytes($state, $Nb); 

  $state = self::shiftRows($state, $Nb); 

  $state = self::addRoundKey($state, $w, $Nr, $Nb); 

    

  $output = array(4*$Nb); // convert state to 1-d array before returning [§3.4] 

  for ($i=0; $i<4*$Nb; $i++) $output[$i] = $state[$i%4][floor($i/4)]; 

  return $output; 

 } 

    

    

 private static function addRoundKey($state, $w, $rnd, $Nb) { // xor Round Key into state S [§5.1.4] 

  for ($r=0; $r<4; $r++) { 

   for ($c=0; $c<$Nb; $c++) $state[$r][$c] ^= $w[$rnd*4+$c][$r]; 

  } 

  return $state; 

 } 

    

 private static function subBytes($s, $Nb) {  // apply SBox to state S [§5.1.1] 

  for ($r=0; $r<4; $r++) { 

   for ($c=0; $c<$Nb; $c++) $s[$r][$c] = self::$sBox[$s[$r][$c]]; 

  } 

  return $s; 

 } 

    

 private static function shiftRows($s, $Nb) {  // shift row r of state S left by r bytes [§5.1.2] 

  $t = array(4); 

  for ($r=1; $r<4; $r++) { 

   for ($c=0; $c<4; $c++) $t[$c] = $s[$r][($c+$r)%$Nb]; // shift into temp copy 

   for ($c=0; $c<4; $c++) $s[$r][$c] = $t[$c];      // and copy back 

  }     // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES): 

  return $s; // see fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf  

 } 

    

 private static function mixColumns($s, $Nb) {  // combine bytes of each col of state S [§5.1.3] 

  for ($c=0; $c<4; $c++) { 

   $a = array(4); // 'a' is a copy of the current column from 's' 

   $b = array(4); // 'b' is a•{02} in GF(2^8) 

   for ($i=0; $i<4; $i++) { 

    $a[$i] = $s[$i][$c]; 

    $b[$i] = $s[$i][$c]&0x80 ? $s[$i][$c]<<1 ^ 0x011b : $s[$i][$c]<<1; 

   } 

   // a[n] ^ b[n] is a•{03} in GF(2^8) 

   $s[0][$c] = $b[0] ^ $a[1] ^ $b[1] ^ $a[2] ^ $a[3]; // 2*a0 + 3*a1 + a2 + a3 

   $s[1][$c] = $a[0] ^ $b[1] ^ $a[2] ^ $b[2] ^ $a[3]; // a0 * 2*a1 + 3*a2 + a3 

   $s[2][$c] = $a[0] ^ $a[1] ^ $b[2] ^ $a[3] ^ $b[3]; // a0 + a1 + 2*a2 + 3*a3 

   $s[3][$c] = $a[0] ^ $b[0] ^ $a[1] ^ $a[2] ^ $b[3]; // 3*a0 + a1 + a2 + 2*a3 

  } 

  return $s; 

 } 

    

 /** 

  * Key expansion for Rijndael cipher(): performs key expansion on cipher key 

  * to generate a key schedule 

  * 

  * @param key cipher key byte-array (16 bytes) 

  * @return  key schedule as 2D byte-array (Nr+1 x Nb bytes) 

  */ 

 public static function keyExpansion($key) { // generate Key Schedule from Cipher Key [§5.2] 

  $Nb = 4;       // block size (in words): no of columns in state (fixed at 4 for AES) 

  $Nk = count($key)/4; // key length (in words): 4/6/8 for 128/192/256-bit keys 

  $Nr = $Nk + 6;    // no of rounds: 10/12/14 for 128/192/256-bit keys 

    

  $w = array(); 

  $temp = array(); 

    

  for ($i=0; $i<$Nk; $i++) { 

   $r = array($key[4*$i], $key[4*$i+1], $key[4*$i+2], $key[4*$i+3]); 

   $w[$i] = $r; 

  } 

    

  for ($i=$Nk; $i<($Nb*($Nr+1)); $i++) { 

   $w[$i] = array(); 

   for ($t=0; $t<4; $t++) $temp[$t] = $w[$i-1][$t]; 

   if ($i % $Nk == 0) { 

    $temp = self::subWord(self::rotWord($temp)); 

    for ($t=0; $t<4; $t++) $temp[$t] ^= self::$rCon[$i/$Nk][$t]; 

   } else if ($Nk > 6 && $i%$Nk == 4) { 

    $temp = self::subWord($temp); 

   } 

   for ($t=0; $t<4; $t++) $w[$i][$t] = $w[$i-$Nk][$t] ^ $temp[$t]; 

  } 

  return $w; 

 } 

    

 private static function subWord($w) {  // apply SBox to 4-byte word w 

  for ($i=0; $i<4; $i++) $w[$i] = self::$sBox[$w[$i]]; 

  return $w; 

 } 

    

 private static function rotWord($w) {  // rotate 4-byte word w left by one byte 

  $tmp = $w[0]; 

  for ($i=0; $i<3; $i++) $w[$i] = $w[$i+1]; 

  $w[3] = $tmp; 

  return $w; 

 } 

    

 // sBox is pre-computed multiplicative inverse in GF(2^8) used in subBytes and keyExpansion [§5.1.1] 

 private static $sBox = array( 

  0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, 

  0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, 

  0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, 

  0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, 

  0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, 

  0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, 

  0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, 

  0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, 

  0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, 

  0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, 

  0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, 

  0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, 

  0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, 

  0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, 

  0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, 

  0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16); 

    

 // rCon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2] 

 private static $rCon = array(  

  array(0x00, 0x00, 0x00, 0x00), 

  array(0x01, 0x00, 0x00, 0x00), 

  array(0x02, 0x00, 0x00, 0x00), 

  array(0x04, 0x00, 0x00, 0x00), 

  array(0x08, 0x00, 0x00, 0x00), 

  array(0x10, 0x00, 0x00, 0x00), 

  array(0x20, 0x00, 0x00, 0x00), 

  array(0x40, 0x00, 0x00, 0x00), 

  array(0x80, 0x00, 0x00, 0x00), 

  array(0x1b, 0x00, 0x00, 0x00), 

  array(0x36, 0x00, 0x00, 0x00) );  

}  

?>

aesctr.class.php file is as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

/* AES counter (CTR) mode implementation in PHP (c) Chris Veness 2005-2011. Right of free use is */

/* granted for all commercial or non-commercial use under CC-BY license. No warranty of any */

/* form is offered.

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

class AesCtr extends Aes {

 /** 

  * Encrypt a text using AES encryption in Counter mode of operation 

  * - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf 

  * 

  * Unicode multi-byte character safe 

  * 

  * @param plaintext source text to be encrypted 

  * @param password the password to use to generate a key 

  * @param nBits   number of bits to be used in the key (128, 192, or 256) 

  * @param keep   keep 1:each not change 0:each change(default) 

  * @return     encrypted text 

  */ 

 public static function encrypt($plaintext, $password, $nBits, $keep=0) { 

  $blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES 

  if (!($nBits==128 || $nBits==192 || $nBits==256)) return ''; // standard allows 128/192/256 bit keys 

  // note PHP (5) gives us plaintext and password in UTF8 encoding! 

     

  // use AES itself to encrypt password to get cipher key (using plain password as source for  

  // key expansion) - gives us well encrypted key 

  $nBytes = $nBits/8; // no bytes in key 

  $pwBytes = array(); 

  for ($i=0; $i<$nBytes; $i++) $pwBytes[$i] = ord(substr($password,$i,1)) & 0xff; 

  $key = Aes::cipher($pwBytes, Aes::keyExpansion($pwBytes)); 

  $key = array_merge($key, array_slice($key, 0, $nBytes-16)); // expand key to 16/24/32 bytes long  

    

  // initialise 1st 8 bytes of counter block with nonce (NIST SP800-38A §B.2): [0-1] = millisec,  

  // [2-3] = random, [4-7] = seconds, giving guaranteed sub-ms uniqueness up to Feb 2106 

  $counterBlock = array(); 

   

  if($keep==0){ 

    $nonce = floor(microtime(true)*1000);  // timestamp: milliseconds since 1-Jan-1970 

    $nonceMs = $nonce%1000; 

    $nonceSec = floor($nonce/1000); 

    $nonceRnd = floor(rand(0, 0xffff)); 

  }else{ 

    $nonce = 10000; 

    $nonceMs = $nonce%1000; 

    $nonceSec = floor($nonce/1000); 

    $nonceRnd = 10000; 

  }   

   

  for ($i=0; $i<2; $i++) $counterBlock[$i]  = self::urs($nonceMs, $i*8) & 0xff; 

  for ($i=0; $i<2; $i++) $counterBlock[$i+2] = self::urs($nonceRnd, $i*8) & 0xff; 

  for ($i=0; $i<4; $i++) $counterBlock[$i+4] = self::urs($nonceSec, $i*8) & 0xff; 

     

  // and convert it to a string to go on the front of the ciphertext 

  $ctrTxt = ''; 

  for ($i=0; $i<8; $i++) $ctrTxt .= chr($counterBlock[$i]); 

    

  // generate key schedule - an expansion of the key into distinct Key Rounds for each round 

  $keySchedule = Aes::keyExpansion($key); 

  //print_r($keySchedule); 

     

  $blockCount = ceil(strlen($plaintext)/$blockSize); 

  $ciphertxt = array(); // ciphertext as array of strings 

     

  for ($b=0; $b<$blockCount; $b++) { 

   // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) 

   // done in two stages for 32-bit ops: using two words allows us to go past 2^32 blocks (68GB) 

   for ($c=0; $c<4; $c++) $counterBlock[15-$c] = self::urs($b, $c*8) & 0xff; 

   for ($c=0; $c<4; $c++) $counterBlock[15-$c-4] = self::urs($b/0x100000000, $c*8); 

    

   $cipherCntr = Aes::cipher($counterBlock, $keySchedule); // -- encrypt counter block -- 

    

   // block size is reduced on final block 

   $blockLength = $b<$blockCount-1 ? $blockSize : (strlen($plaintext)-1)%$blockSize+1; 

   $cipherByte = array(); 

      

   for ($i=0; $i<$blockLength; $i++) { // -- xor plaintext with ciphered counter byte-by-byte -- 

    $cipherByte[$i] = $cipherCntr[$i] ^ ord(substr($plaintext, $b*$blockSize+$i, 1)); 

    $cipherByte[$i] = chr($cipherByte[$i]); 

   } 

   $ciphertxt[$b] = implode('', $cipherByte); // escape troublesome characters in ciphertext 

  } 

    

  // implode is more efficient than repeated string concatenation 

  $ciphertext = $ctrTxt . implode('', $ciphertxt); 

  $ciphertext = base64_encode($ciphertext); 

  return $ciphertext; 

 } 

    

 /** 

  * Decrypt a text encrypted by AES in counter mode of operation 

  * 

  * @param ciphertext source text to be decrypted 

  * @param password  the password to use to generate a key 

  * @param nBits   number of bits to be used in the key (128, 192, or 256) 

  * @return      decrypted text 

  */ 

 public static function decrypt($ciphertext, $password, $nBits) { 

  $blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES 

  if (!($nBits==128 || $nBits==192 || $nBits==256)) return ''; // standard allows 128/192/256 bit keys 

  $ciphertext = base64_decode($ciphertext); 

    

  // use AES to encrypt password (mirroring encrypt routine) 

  $nBytes = $nBits/8; // no bytes in key 

  $pwBytes = array(); 

  for ($i=0; $i<$nBytes; $i++) $pwBytes[$i] = ord(substr($password,$i,1)) & 0xff; 

  $key = Aes::cipher($pwBytes, Aes::keyExpansion($pwBytes)); 

  $key = array_merge($key, array_slice($key, 0, $nBytes-16)); // expand key to 16/24/32 bytes long 

     

  // recover nonce from 1st element of ciphertext 

  $counterBlock = array(); 

  $ctrTxt = substr($ciphertext, 0, 8); 

  for ($i=0; $i<8; $i++) $counterBlock[$i] = ord(substr($ctrTxt,$i,1)); 

     

  // generate key schedule 

  $keySchedule = Aes::keyExpansion($key); 

    

  // separate ciphertext into blocks (skipping past initial 8 bytes) 

  $nBlocks = ceil((strlen($ciphertext)-8) / $blockSize); 

  $ct = array(); 

  for ($b=0; $b<$nBlocks; $b++) $ct[$b] = substr($ciphertext, 8+$b*$blockSize, 16); 

  $ciphertext = $ct; // ciphertext is now array of block-length strings 

    

  // plaintext will get generated block-by-block into array of block-length strings 

  $plaintxt = array(); 

     

  for ($b=0; $b<$nBlocks; $b++) { 

   // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) 

   for ($c=0; $c<4; $c++) $counterBlock[15-$c] = self::urs($b, $c*8) & 0xff; 

   for ($c=0; $c<4; $c++) $counterBlock[15-$c-4] = self::urs(($b+1)/0x100000000-1, $c*8) & 0xff; 

    

   $cipherCntr = Aes::cipher($counterBlock, $keySchedule); // encrypt counter block 

    

   $plaintxtByte = array(); 

   for ($i=0; $i

    // -- xor plaintext with ciphered counter byte-by-byte -- 

    $plaintxtByte[$i] = $cipherCntr[$i] ^ ord(substr($ciphertext[$b],$i,1)); 

    $plaintxtByte[$i] = chr($plaintxtByte[$i]); 

      

   } 

   $plaintxt[$b] = implode('', $plaintxtByte);  

  } 

    

  // join array of blocks into single plaintext string 

  $plaintext = implode('',$plaintxt); 

     

  return $plaintext; 

 } 

    

 /* 

  * Unsigned right shift function, since PHP has neither >>> operator nor unsigned ints 

  * 

  * @param a number to be shifted (32-bit integer) 

  * @param b number of bits to shift a to the right (0..31) 

  * @return  a right-shifted and zero-filled by b bits 

  */ 

 private static function urs($a, $b) { 

  $a &= 0xffffffff; $b &= 0x1f; // (bounds check) 

  if ($a&0x80000000 && $b>0) {  // if left-most bit set 

   $a = ($a>>1) & 0x7fffffff;  //  right-shift one bit & clear left-most bit 

   $a = $a >> ($b-1);      //  remaining right-shifts 

  } else {            // otherwise 

   $a = ($a>>$b);        //  use normal right-shift 

  }  

  return $a;  

 } 

}  

?>

Demo实例程序如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

require 'aes.class.php'; // AES PHP implementation

require 'aesctr.class.php'; // AES Counter Mode implementation

echo 'each change
'; 

   

$mstr = AesCtr::encrypt('Hello World', 'key', 256); 

echo "Encrypt String : $mstr
"; 

   

$dstr = AesCtr::decrypt($mstr, 'key', 256); 

echo "Decrypt String : $dstr
"; 

   

echo 'each not change
'; 

   

$mstr = AesCtr::encrypt('Hello World', 'key', 256, 1); // keep=1 

echo "Encrypt String : $mstr
"; 

   

$dstr = AesCtr::decrypt($mstr, 'key', 256); 

echo "Decrypt String : $dstr
"; 

?>

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
';      $mstr = AesCtr::encrypt('Hello World', 'key', 256);  echo "Encrypt String : $mstr
";      $dstr = AesCtr::decrypt($mstr, 'key', 256);  echo "Decrypt String : $dstr
";      echo 'each not change
';      $mstr = AesCtr::encrypt('Hello World', 'key', 256, 1); // keep=1  echo "Encrypt String : $mstr
";      $dstr = AesCtr::decrypt($mstr, 'key', 256);  echo "Decrypt String : $dstr
";  ?>

Here is another introduction to another encryption and decryption method using PHP mcrypt:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

/* aes 256 encrypt 

* @param String $ostr 

* @param String $securekey 

* @param String $type encrypt, decrypt 

*/ 

function aes($ostr, $securekey, $type='encrypt'){ 

  if($ostr==''){ 

    return ''; 

  } 

     

  $key = $securekey; 

  $iv = strrev($securekey); 

  $td = mcrypt_module_open('rijndael-256', '', 'ofb', ''); 

  mcrypt_generic_init($td, $key, $iv); 

   

  $str = ''; 

   

  switch($type){ 

    case 'encrypt': 

      $str = base64_encode(mcrypt_generic($td, $ostr)); 

      break; 

   

    case 'decrypt': 

      $str = mdecrypt_generic($td, base64_decode($ostr)); 

      break; 

  } 

   

  mcrypt_generic_deinit($td); 

   

  return $str; 

   

// Demo 

$key = "fdipzone201314showmethemoney!@#$"; 

$str = "show me the money"; 

   

$ostr = aes($str, $key); 

echo "String 1: $ostr
"; 

   

$dstr = aes($ostr, $key, 'decrypt'); 

echo "String 2: $dstr
";

1 2 3

4

6 7 8 9 10
11 12
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/* aes 256 encrypt * @param String $ostr * @param String $securekey * @param String $type encrypt, decrypt */ function aes($ostr, $securekey, $type='encrypt'){ if($ostr==''){ return ''; } $key = $securekey; $iv = strrev($securekey); $td = mcrypt_module_open('rijndael-256', '', 'ofb', ''); mcrypt_generic_init($td, $key, $iv); $str = ''; switch($type){ case 'encrypt': $str = base64_encode(mcrypt_generic($td, $ostr)); break; case 'decrypt': $str = mdecrypt_generic($td, base64_decode($ostr)); break; } mcrypt_generic_deinit($td); return $str; } // Demo $key = "fdipzone201314showmethemoney!@#$"; $str = "show me the money"; $ostr = aes($str, $key); echo "String 1: $ostr
"; $dstr = aes($ostr, $key, 'decrypt'); echo "String 2: $dstr
";
http://www.bkjia.com/PHPjc/882700.htmlwww.bkjia.comtruehttp: //www.bkjia.com/PHPjc/882700.htmlTechArticleExample of PHP implementing AES256 encryption algorithm. This example describes the method of PHP implementing AES256 encryption algorithm, which is a more common one. encryption algorithm. Share it with everyone for your reference. The details are as follows:...
Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn