


Usage of Template class string template in Python's string module
string.Template()
string.Template()内添加替换的字符, 使用"$"符号, 或 在字符串内, 使用"${}"; 调用时使用string.substitute(dict)函数.
可以通过继承"string.Template", 覆盖变量delimiter(定界符)和idpattern(替换格式), 定制不同形式的模板.
代码:
# -*- coding: utf-8 -*- import string template_text = ''''' Delimiter : %% Replaced : %with_underscore Ingored : %notunderscored ''' d = {'with_underscore' : 'replaced', 'notunderscored' : 'not replaced'} class MyTemplate(string.Template): delimiter = '%' idpattern = '[a-z]+_[a-z]+' t = MyTemplate(template_text) print('Modified ID pattern: ') print(t.safe_substitute(d))
输出:
Modified ID pattern: Delimiter : % Replaced : replaced Ingored : %notunderscored
注意: 定界符(delimiter)为"%", 替换模式(idpattern)必须包含下划线, 所以第2个没有进行替换.
正则替换
string.Template的pattern是一个正则表达式, 可以通过覆盖pattern属性, 定义新的正则表达式.
如: 使用新的定界符"{{", 把{{var}}作为变量语法.
代码:
import string t = string.Template('$var') print(t.pattern.pattern) class MyTemplate(string.Template): delimiter = '{{' pattern = r''''' \{\{(?: (?P<escaped>\{\{) | # Escape sequence of two delimiters (?P<named>[_a-z][_a-z0-9]*)\}\} | # delimiter and a Python identifier {(?P<braced>[_a-z][_a-z0-9]*)}\}\} | # delimiter and a braced identifier (?P<invalid>) # Other ill-formed delimiter exprs ) ''' t2 = MyTemplate(''''' {{{{ {{var}} ''') print('MATCHES: ', t2.pattern.findall(t2.template)) print('SUBSTITUTED: ', t2.safe_substitute(var='replacement'))
输出:
\$(?: (?P<escaped>\$) | # Escape sequence of two delimiters (?P<named>[_a-z][_a-z0-9]*) | # delimiter and a Python identifier {(?P<braced>[_a-z][_a-z0-9]*)} | # delimiter and a braced identifier (?P<invalid>) # Other ill-formed delimiter exprs ) MATCHES: [('{{', '', '', ''), ('', 'var', '', '')] SUBSTITUTED: {{ replacement
字符串模板的安全替换(safe_substitute)
字符串模板(sting.Template), 替换时, 使用substitute(), 未能提供模板所需的全部参数值时, 会发生异常.
如果使用safe_substitute(), 即安全替换, 则会替换存在的字典值, 保留未存在的替换符号.
代码:
import string values = {'var' : 'foo'} t = string.Template('''''$var is here but $ missing is not provided! ''') try: print 'substitute() : ', t.substitute(values) except ValueError as err: print 'Error:', str(err) print 'safe_substitude() : ', t.safe_substitute(values)
输出:
substitute() : Error: Invalid placeholder in string: line 1, col 18 safe_substitude() : foo is here but $ missing is not provided!

Pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)Theyarestoredincontiguousmemoryblocks,whichmayrequirereallocationwhenappendingitems,impactingperformance.2)Linkedlistswouldofferefficientinsertions/deletionsbutslowerindexedaccess,leadingPytho

Pythonoffersfourmainmethodstoremoveelementsfromalist:1)remove(value)removesthefirstoccurrenceofavalue,2)pop(index)removesandreturnsanelementataspecifiedindex,3)delstatementremoveselementsbyindexorslice,and4)clear()removesallitemsfromthelist.Eachmetho

Toresolvea"Permissiondenied"errorwhenrunningascript,followthesesteps:1)Checkandadjustthescript'spermissionsusingchmod xmyscript.shtomakeitexecutable.2)Ensurethescriptislocatedinadirectorywhereyouhavewritepermissions,suchasyourhomedirectory.

ArraysarecrucialinPythonimageprocessingastheyenableefficientmanipulationandanalysisofimagedata.1)ImagesareconvertedtoNumPyarrays,withgrayscaleimagesas2Darraysandcolorimagesas3Darrays.2)Arraysallowforvectorizedoperations,enablingfastadjustmentslikebri

Arraysaresignificantlyfasterthanlistsforoperationsbenefitingfromdirectmemoryaccessandfixed-sizestructures.1)Accessingelements:Arraysprovideconstant-timeaccessduetocontiguousmemorystorage.2)Iteration:Arraysleveragecachelocalityforfasteriteration.3)Mem

Arraysarebetterforelement-wiseoperationsduetofasteraccessandoptimizedimplementations.1)Arrayshavecontiguousmemoryfordirectaccess,enhancingperformance.2)Listsareflexiblebutslowerduetopotentialdynamicresizing.3)Forlargedatasets,arrays,especiallywithlib

Mathematical operations of the entire array in NumPy can be efficiently implemented through vectorized operations. 1) Use simple operators such as addition (arr 2) to perform operations on arrays. 2) NumPy uses the underlying C language library, which improves the computing speed. 3) You can perform complex operations such as multiplication, division, and exponents. 4) Pay attention to broadcast operations to ensure that the array shape is compatible. 5) Using NumPy functions such as np.sum() can significantly improve performance.

In Python, there are two main methods for inserting elements into a list: 1) Using the insert(index, value) method, you can insert elements at the specified index, but inserting at the beginning of a large list is inefficient; 2) Using the append(value) method, add elements at the end of the list, which is highly efficient. For large lists, it is recommended to use append() or consider using deque or NumPy arrays to optimize performance.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Notepad++7.3.1
Easy-to-use and free code editor

Atom editor mac version download
The most popular open source editor

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
