search
HomeBackend DevelopmentPython Tutorialpython复制文件代码实现

主要功能在copyFiles()函数里实现,如下:

复制代码 代码如下:

def copyFiles(src, dst):
    srcFiles = os.listdir(src)
    dstFiles = dict(map(lambda x:[x, ''], os.listdir(dst)))
    filesCopiedNum = 0

    # 对源文件夹中的每个文件若不存在于目的文件夹则复制
    for file in srcFiles:
        src_path = os.path.join(src, file)
        dst_path = os.path.join(dst, file)
        # 若源路径为文件夹,若存在于目标文件夹,则递归调用本函数;否则先创建再递归。
        if os.path.isdir(src_path):
            if not os.path.isdir(dst_path):
                os.makedirs(dst_path) 
            filesCopiedNum += copyFiles(src_path, dst_path)
        # 若源路径为文件,不重复则复制,否则无操作。
        elif os.path.isfile(src_path):               
            if not dstFiles.has_key(file):
                shutil.copyfile(src_path, dst_path)
                filesCopiedNum += 1

    return filesCopiedNum

这里我首先使用os.listdir()函数来遍历源文件夹src和目标文件夹dst,得到两个文件列表,但由于我需要判重操作,因此需要在dst文件列表中进行查询操作。由于列表的查询效率不高,而字典是一个哈希表,查询效率较高,因此我将目标文件列表转换成一个只有键没有值的字典:

复制代码 代码如下:

dstFiles = dict(map(lambda x:[x, ''], os.listdir(dst)))

然后我遍历源文件列表,若该路径是一个文件夹,先判断该文件夹在目标路径中是否存在,若不存在,则先创建一个新路径。然后递归调用本函数。其实不存在的时候更高效的方法是调用shutil.copytree()函数,但由于此处需要计算拷贝的文件数量,因此就没有调用该函数。

若该路径是一个文件,则首先判断该文件在目标文件夹中是否存在。若不存在,则拷贝。

由于写这个脚本主要是为了同步手机相册到PC,因此只简单地判断一下文件名。若要判断不同名但相同的文件,则可以继续判断一下md5值,这里就不再赘述。

完整代码如下:

复制代码 代码如下:

#!/usr/bin/env python
# -*- coding: UTF-8 -*-

# 输入两个文件夹a和b路径,将a中的文件拷进b,并计算拷贝的文件数。重复的不作处理。

import os
import shutil

def copyFiles(src, dst):
    srcFiles = os.listdir(src)
    dstFiles = dict(map(lambda x:[x, ''], os.listdir(dst)))
    filesCopiedNum = 0

    # 对源文件夹中的每个文件若不存在于目的文件夹则复制
    for file in srcFiles:
        src_path = os.path.join(src, file)
        dst_path = os.path.join(dst, file)
        # 若源路径为文件夹,若存在于目标文件夹,则递归调用本函数;否则先创建再递归。
        if os.path.isdir(src_path):
            if not os.path.isdir(dst_path):
                os.makedirs(dst_path) 
            filesCopiedNum += copyFiles(src_path, dst_path)
        # 若源路径为文件,不重复则复制,否则无操作。
        elif os.path.isfile(src_path):               
            if not dstFiles.has_key(file):
                shutil.copyfile(src_path, dst_path)
                filesCopiedNum += 1

    return filesCopiedNum

def test():
    src_dir = os.path.abspath(raw_input('Please enter the source path: '))
    if not os.path.isdir(src_dir):
        print 'Error: source folder does not exist!'
        return 0

    dst_dir = os.path.abspath(raw_input('Please enter the destination path: '))
    if os.path.isdir(dst_dir):
        num = copyFiles(src_dir, dst_dir)
    else:
        print 'Destination folder does not exist, a new one will be created.'
        os.makedirs(dst_dir)
        num = copyFiles(src_dir, dst_dir)

    print 'Copy complete:', num, 'files copied.'

if __name__ == '__main__':
    test()

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to Use Python to Find the Zipf Distribution of a Text FileHow to Use Python to Find the Zipf Distribution of a Text FileMar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

What are some popular Python libraries and their uses?What are some popular Python libraries and their uses?Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

Scraping Webpages in Python With Beautiful Soup: Search and DOM ModificationScraping Webpages in Python With Beautiful Soup: Search and DOM ModificationMar 08, 2025 am 10:36 AM

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

How to Create Command-Line Interfaces (CLIs) with Python?How to Create Command-Line Interfaces (CLIs) with Python?Mar 10, 2025 pm 06:48 PM

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use