代码依赖:networkx matplotlib
#! /bin/env python
# -*- coding: utf-8 -*-
import urllib
import urllib2
import cookielib
import re
import cPickle as p
import networkx as nx
import matplotlib.pyplot as plt
__author__ = """Reverland (lhtlyy@gmail.com)"""
# Control parameters,EDIT it here
## Login
username = 'None'
password = 'None'
## Control Graphs, Edit for better graphs as you need
label_flag = True # Whether shows labels.NOTE: configure your matplotlibrc for Chinese characters.
remove_isolated = True # Whether remove isolated nodes(less than iso_level connects)
different_size = True # Nodes for different size, bigger means more shared friends
iso_level = 10
node_size = 40 # Default node size
def login(username, password):
"""log in and return uid"""
logpage = "http://www.renren.com/ajaxLogin/login"
data = {'email': username, 'password': password}
login_data = urllib.urlencode(data)
cj = cookielib.CookieJar()
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
urllib2.install_opener(opener)
res = opener.open(logpage, login_data)
print "Login now ..."
html = res.read()
#print html
# Get uid
print "Getting user id of you now"
res = urllib2.urlopen("http://www.renren.com/home")
html = res.read()
# print html
uid = re.search("'ruid':'(\\d+)'", html).group(1)
# print uid
print "Login and got uid successfully"
return uid
def getfriends(uid):
"""Get the uid's friends and return the dict with uid as key,name as value."""
print "Get %s 's friend list" % str(uid)
pagenum = 0
dict1 = {}
while True:
targetpage = "http://friend.renren.com/GetFriendList.do?curpage=" + str(pagenum) + "&id=" + str(uid)
res = urllib2.urlopen(targetpage)
html = res.read()
pattern = '
![[\\S]*[\\s]\\((.*)\\)](/static/imghwm/default1.png)
m = re.findall(pattern, html)
#print len(m)
if len(m) == 0:
break
for i in range(0, len(m)):
no = m[i][0]
uname = m[i][1]
#print uname, no
dict1[no] = uname
pagenum += 1
print "Got %s 's friends list successfully." % str(uid)
return dict1
def getdict(uid):
"""cache dict of uid in the disk."""
try:
with open(str(uid) + '.txt', 'r') as f:
dict_uid = p.load(f)
except:
with open(str(uid) + '.txt', 'w') as f:
p.dump(getfriends(uid), f)
dict_uid = getdict(uid)
return dict_uid
def getrelations(uid1, uid2):
"""receive two user id, If they are friends, return 1, otherwise 0."""
dict_uid1 = getdict(uid1)
if uid2 in dict_uid1:
return 1
else:
return 0
def getgraph(username, password):
"""Get the Graph Object and return it.
You must specify a Chinese font such as `SimHei` in ~/.matplotlib/matplotlibrc"""
uid = login(username, password)
dict_root = getdict(uid) # Get root tree
G = nx.Graph() # Create a Graph object
for uid1, uname1 in dict_root.items():
# Encode Chinese characters for matplotlib **IMPORTANT**
# if you want to draw Chinese labels,
uname1 = unicode(uname1, 'utf8')
G.add_node(uname1)
for uid2, uname2 in dict_root.items():
uname2 = unicode(uname2, 'utf8')
# Not necessary for networkx
if uid2 == uid1:
continue
if getrelations(uid1, uid2):
G.add_edge(uname1, uname2)
return G
def draw_graph(username, password, filename='graph.txt', label_flag=True, remove_isolated=True, different_size=True, iso_level=10, node_size=40):
"""Reading data from file and draw the graph.If not exists, create the file and re-scratch data from net"""
print "Generating graph..."
try:
with open(filename, 'r') as f:
G = p.load(f)
except:
G = getgraph(username, password)
with open(filename, 'w') as f:
p.dump(G, f)
#nx.draw(G)
# Judge whether remove the isolated point from graph
if remove_isolated is True:
H = nx.empty_graph()
for SG in nx.connected_component_subgraphs(G):
if SG.number_of_nodes() > iso_level:
H = nx.union(SG, H)
G = H
# Ajust graph for better presentation
if different_size is True:
L = nx.degree(G)
G.dot_size = {}
for k, v in L.items():
G.dot_size[k] = v
node_size = [G.dot_size[v] * 10 for v in G]
pos = nx.spring_layout(G, iterations=50)
nx.draw_networkx_edges(G, pos, alpha=0.2)
nx.draw_networkx_nodes(G, pos, node_size=node_size, node_color='r', alpha=0.3)
# Judge whether shows label
if label_flag is True:
nx.draw_networkx_labels(G, pos, alpha=0.5)
#nx.draw_graphviz(G)
plt.show()
return G
if __name__ == "__main__":
G = draw_graph(username, password)

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Python, a favorite for data science and processing, offers a rich ecosystem for high-performance computing. However, parallel programming in Python presents unique challenges. This tutorial explores these challenges, focusing on the Global Interprete

This tutorial demonstrates creating a custom pipeline data structure in Python 3, leveraging classes and operator overloading for enhanced functionality. The pipeline's flexibility lies in its ability to apply a series of functions to a data set, ge

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 English version
Recommended: Win version, supports code prompts!

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)
