search
HomeBackend DevelopmentGolangHow to implement hash mapping and prefix query functions from multi-dimensional to unique values ​​in Java?

How to implement hash mapping and prefix query functions from multi-dimensional to unique values ​​in Java?

Hash mapping and prefix query from Java multi-dimensional data to unique ID

This article discusses how to design a hash map in Java to implement the mapping of multi-dimensional data to unique IDs, and supports prefix query based on partial dimensions. For example, the function f(a, b, c, ...) needs to generate a unique ID, and f(a, b) != f(b, a) . We also need to be able to query all mapping results prefixed with a specific dimension, such as querying all mappings starting with a .

plan:

It is difficult to efficiently implement prefix query using a single HashMap directly. A more efficient solution is to use a tree structure, such as a Trie tree or a custom tree structure, with dimension information as keys and unique IDs as values.

Implementation steps:

  1. Dimensional data structure: Define a class to represent dimensional data, for example:
 class Dimension {
    String a;
    String b;
    String c;
    // ... other dimensions

    public Dimension(String a, String b, String c) {
        this.a = a;
        this.b = b;
        this.c = c;
    }

    // equals() and hashCode() methods for HashMap comparison
    @Override
    public boolean equals(Object obj) {
        if (this == obj) return true;
        if (obj == null || getClass() != obj.getClass()) return false;
        Dimension that = (Dimension) obj;
        return Objects.equals(a, that.a) && Objects.equals(b, that.b) && Objects.equals(c, that.c);
    }

    @Override
    public int hashCode() {
        return Objects.hash(a, b, c);
    }
}
  1. Trie tree structure (example): Use Trie tree to store dimension information and ID mapping. Each node represents a dimension value, and the leaf node stores a unique ID.
 class TrieNode {
    String value;
    Map<string trienode> children;
    String uniqueId; // Store unique ID at leaf nodes

    public TrieNode(String value) {
        this.value = value;
        this.children = new HashMap();
    }
}

class Trie {
    TrieNode root;

    public Trie() {
        root = new TrieNode("");
    }

    public void insert(Dimension dim, String uniqueId) {
        TrieNode node = root;
        node = insertRecursive(node, dim, uniqueId);
    }

    private TrieNode insertRecursive(TrieNode node, Dimension dim, String uniqueId) {
        if (dim == null) {
            node.uniqueId = uniqueId;
            return node;
        }
        if (dim.a != null) {
            node.children.computeIfAbsent(dim.a, k -> new TrieNode(k));
            node = node.children.get(dim.a);
            if (dim.b != null) {
                node.children.computeIfAbsent(dim.b, k -> new TrieNode(k));
                node = node.children.get(dim.b);
                if (dim.c != null) {
                    node.children.computeIfAbsent(dim.c, k -> new TrieNode(k));
                    node = node.children.get(dim.c);
                }
            }
        }
        node.uniqueId = uniqueId;
        return node;
    }


    public List<string> prefixSearch(String prefix) {
        List<string> result = new ArrayList();
        TrieNode node = root;
        for (String part : prefix.split(",")) {
            if (!node.children.containsKey(part)) {
                return result; // Prefix not found
            }
            node = node.children.get(part);
        }
        collectIds(node, result);
        return result;
    }

    private void collectIds(TrieNode node, List<string> result) {
        if (node.uniqueId != null) {
            result.add(node.uniqueId);
        }
        for (TrieNode child : node.children.values()) {
            collectIds(child, result);
        }
    }
}</string></string></string></string>
  1. Example of usage:
 public class Main {
    public static void main(String[] args) {
        Trie trie = new Trie();
        trie.insert(new Dimension("a", "b", "c"), "u1");
        trie.insert(new Dimension("a", "b", "d"), "u2");
        trie.insert(new Dimension("x", "y", "z"), "v1");

        List<string> results = trie.prefixSearch("a,b");
        System.out.println(results); // Output: [u1, u2]

        results = trie.prefixSearch("a");
        System.out.println(results); // Output: [u1, u2]

        results = trie.prefixSearch("x");
        System.out.println(results); // Output: [v1]
    }
}</string>

This example shows how to use a Trie tree to implement mapping and prefix query of multi-dimensional data to unique IDs. You can adjust the dimensional data structure and implementation details of the Trie tree according to actual needs. For very large data sets, consider using more advanced data structures and algorithms to optimize performance. For example, consider using database indexes to speed up queries.

The above is the detailed content of How to implement hash mapping and prefix query functions from multi-dimensional to unique values ​​in Java?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Go Error Handling: Best Practices and PatternsGo Error Handling: Best Practices and PatternsMay 04, 2025 am 12:19 AM

In Go programming, ways to effectively manage errors include: 1) using error values ​​instead of exceptions, 2) using error wrapping techniques, 3) defining custom error types, 4) reusing error values ​​for performance, 5) using panic and recovery with caution, 6) ensuring that error messages are clear and consistent, 7) recording error handling strategies, 8) treating errors as first-class citizens, 9) using error channels to handle asynchronous errors. These practices and patterns help write more robust, maintainable and efficient code.

How do you implement concurrency in Go?How do you implement concurrency in Go?May 04, 2025 am 12:13 AM

Implementing concurrency in Go can be achieved by using goroutines and channels. 1) Use goroutines to perform tasks in parallel, such as enjoying music and observing friends at the same time in the example. 2) Securely transfer data between goroutines through channels, such as producer and consumer models. 3) Avoid excessive use of goroutines and deadlocks, and design the system reasonably to optimize concurrent programs.

Building Concurrent Data Structures in GoBuilding Concurrent Data Structures in GoMay 04, 2025 am 12:09 AM

Gooffersmultipleapproachesforbuildingconcurrentdatastructures,includingmutexes,channels,andatomicoperations.1)Mutexesprovidesimplethreadsafetybutcancauseperformancebottlenecks.2)Channelsofferscalabilitybutmayblockiffullorempty.3)Atomicoperationsareef

Comparing Go's Error Handling to Other Programming LanguagesComparing Go's Error Handling to Other Programming LanguagesMay 04, 2025 am 12:09 AM

Go'serrorhandlingisexplicit,treatingerrorsasreturnedvaluesratherthanexceptions,unlikePythonandJava.1)Go'sapproachensureserrorawarenessbutcanleadtoverbosecode.2)PythonandJavauseexceptionsforcleanercodebutmaymisserrors.3)Go'smethodpromotesrobustnessand

Testing Code that Relies on init Functions in GoTesting Code that Relies on init Functions in GoMay 03, 2025 am 12:20 AM

WhentestingGocodewithinitfunctions,useexplicitsetupfunctionsorseparatetestfilestoavoiddependencyoninitfunctionsideeffects.1)Useexplicitsetupfunctionstocontrolglobalvariableinitialization.2)Createseparatetestfilestobypassinitfunctionsandsetupthetesten

Comparing Go's Error Handling Approach to Other LanguagesComparing Go's Error Handling Approach to Other LanguagesMay 03, 2025 am 12:20 AM

Go'serrorhandlingreturnserrorsasvalues,unlikeJavaandPythonwhichuseexceptions.1)Go'smethodensuresexpliciterrorhandling,promotingrobustcodebutincreasingverbosity.2)JavaandPython'sexceptionsallowforcleanercodebutcanleadtooverlookederrorsifnotmanagedcare

Best Practices for Designing Effective Interfaces in GoBest Practices for Designing Effective Interfaces in GoMay 03, 2025 am 12:18 AM

AneffectiveinterfaceinGoisminimal,clear,andpromotesloosecoupling.1)Minimizetheinterfaceforflexibilityandeaseofimplementation.2)Useinterfacesforabstractiontoswapimplementationswithoutchangingcallingcode.3)Designfortestabilitybyusinginterfacestomockdep

Centralized Error Handling Strategies in GoCentralized Error Handling Strategies in GoMay 03, 2025 am 12:17 AM

Centralized error handling can improve the readability and maintainability of code in Go language. Its implementation methods and advantages include: 1. Separate error handling logic from business logic and simplify code. 2. Ensure the consistency of error handling by centrally handling. 3. Use defer and recover to capture and process panics to enhance program robustness.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)