


Hash mapping and prefix query from Java multi-dimensional data to unique ID
This article discusses how to design a hash map in Java to implement the mapping of multi-dimensional data to unique IDs, and supports prefix query based on partial dimensions. For example, the function f(a, b, c, ...)
needs to generate a unique ID, and f(a, b) != f(b, a)
. We also need to be able to query all mapping results prefixed with a specific dimension, such as querying all mappings starting with a
.
plan:
It is difficult to efficiently implement prefix query using a single HashMap directly. A more efficient solution is to use a tree structure, such as a Trie tree or a custom tree structure, with dimension information as keys and unique IDs as values.
Implementation steps:
- Dimensional data structure: Define a class to represent dimensional data, for example:
class Dimension { String a; String b; String c; // ... other dimensions public Dimension(String a, String b, String c) { this.a = a; this.b = b; this.c = c; } // equals() and hashCode() methods for HashMap comparison @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null || getClass() != obj.getClass()) return false; Dimension that = (Dimension) obj; return Objects.equals(a, that.a) && Objects.equals(b, that.b) && Objects.equals(c, that.c); } @Override public int hashCode() { return Objects.hash(a, b, c); } }
- Trie tree structure (example): Use Trie tree to store dimension information and ID mapping. Each node represents a dimension value, and the leaf node stores a unique ID.
class TrieNode { String value; Map<string trienode> children; String uniqueId; // Store unique ID at leaf nodes public TrieNode(String value) { this.value = value; this.children = new HashMap(); } } class Trie { TrieNode root; public Trie() { root = new TrieNode(""); } public void insert(Dimension dim, String uniqueId) { TrieNode node = root; node = insertRecursive(node, dim, uniqueId); } private TrieNode insertRecursive(TrieNode node, Dimension dim, String uniqueId) { if (dim == null) { node.uniqueId = uniqueId; return node; } if (dim.a != null) { node.children.computeIfAbsent(dim.a, k -> new TrieNode(k)); node = node.children.get(dim.a); if (dim.b != null) { node.children.computeIfAbsent(dim.b, k -> new TrieNode(k)); node = node.children.get(dim.b); if (dim.c != null) { node.children.computeIfAbsent(dim.c, k -> new TrieNode(k)); node = node.children.get(dim.c); } } } node.uniqueId = uniqueId; return node; } public List<string> prefixSearch(String prefix) { List<string> result = new ArrayList(); TrieNode node = root; for (String part : prefix.split(",")) { if (!node.children.containsKey(part)) { return result; // Prefix not found } node = node.children.get(part); } collectIds(node, result); return result; } private void collectIds(TrieNode node, List<string> result) { if (node.uniqueId != null) { result.add(node.uniqueId); } for (TrieNode child : node.children.values()) { collectIds(child, result); } } }</string></string></string></string>
- Example of usage:
public class Main { public static void main(String[] args) { Trie trie = new Trie(); trie.insert(new Dimension("a", "b", "c"), "u1"); trie.insert(new Dimension("a", "b", "d"), "u2"); trie.insert(new Dimension("x", "y", "z"), "v1"); List<string> results = trie.prefixSearch("a,b"); System.out.println(results); // Output: [u1, u2] results = trie.prefixSearch("a"); System.out.println(results); // Output: [u1, u2] results = trie.prefixSearch("x"); System.out.println(results); // Output: [v1] } }</string>
This example shows how to use a Trie tree to implement mapping and prefix query of multi-dimensional data to unique IDs. You can adjust the dimensional data structure and implementation details of the Trie tree according to actual needs. For very large data sets, consider using more advanced data structures and algorithms to optimize performance. For example, consider using database indexes to speed up queries.
The above is the detailed content of How to implement hash mapping and prefix query functions from multi-dimensional to unique values in Java?. For more information, please follow other related articles on the PHP Chinese website!

ai合并图层的快捷键是“Ctrl+Shift+E”,它的作用是把目前所有处在显示状态的图层合并,在隐藏状态的图层则不作变动。也可以选中要合并的图层,在菜单栏中依次点击“窗口”-“路径查找器”,点击“合并”按钮。

ai橡皮擦擦不掉东西是因为AI是矢量图软件,用橡皮擦不能擦位图的,其解决办法就是用蒙板工具以及钢笔勾好路径再建立蒙板即可实现擦掉东西。

虽然谷歌早在2020年,就在自家的数据中心上部署了当时最强的AI芯片——TPU v4。但直到今年的4月4日,谷歌才首次公布了这台AI超算的技术细节。论文地址:https://arxiv.org/abs/2304.01433相比于TPU v3,TPU v4的性能要高出2.1倍,而在整合4096个芯片之后,超算的性能更是提升了10倍。另外,谷歌还声称,自家芯片要比英伟达A100更快、更节能。与A100对打,速度快1.7倍论文中,谷歌表示,对于规模相当的系统,TPU v4可以提供比英伟达A100强1.

ai可以转成psd格式。转换方法:1、打开Adobe Illustrator软件,依次点击顶部菜单栏的“文件”-“打开”,选择所需的ai文件;2、点击右侧功能面板中的“图层”,点击三杠图标,在弹出的选项中选择“释放到图层(顺序)”;3、依次点击顶部菜单栏的“文件”-“导出”-“导出为”;4、在弹出的“导出”对话框中,将“保存类型”设置为“PSD格式”,点击“导出”即可;

ai顶部属性栏不见了的解决办法:1、开启Ai新建画布,进入绘图页面;2、在Ai顶部菜单栏中点击“窗口”;3、在系统弹出的窗口菜单页面中点击“控制”,然后开启“控制”窗口即可显示出属性栏。

Yann LeCun 这个观点的确有些大胆。 「从现在起 5 年内,没有哪个头脑正常的人会使用自回归模型。」最近,图灵奖得主 Yann LeCun 给一场辩论做了个特别的开场。而他口中的自回归,正是当前爆红的 GPT 家族模型所依赖的学习范式。当然,被 Yann LeCun 指出问题的不只是自回归模型。在他看来,当前整个的机器学习领域都面临巨大挑战。这场辩论的主题为「Do large language models need sensory grounding for meaning and u

引入密集强化学习,用 AI 验证 AI。 自动驾驶汽车 (AV) 技术的快速发展,使得我们正处于交通革命的风口浪尖,其规模是自一个世纪前汽车问世以来从未见过的。自动驾驶技术具有显着提高交通安全性、机动性和可持续性的潜力,因此引起了工业界、政府机构、专业组织和学术机构的共同关注。过去 20 年里,自动驾驶汽车的发展取得了长足的进步,尤其是随着深度学习的出现更是如此。到 2015 年,开始有公司宣布他们将在 2020 之前量产 AV。不过到目前为止,并且没有 level 4 级别的 AV 可以在市场

ai移动不了东西的解决办法:1、打开ai软件,打开空白文档;2、选择矩形工具,在文档中绘制矩形;3、点击选择工具,移动文档中的矩形;4、点击图层按钮,弹出图层面板对话框,解锁图层;5、点击选择工具,移动矩形即可。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

SublimeText3 English version
Recommended: Win version, supports code prompts!

Dreamweaver Mac version
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools