


Hash mapping and prefix query from Java multi-dimensional data to unique ID
This article discusses how to design a hash map in Java to implement the mapping of multi-dimensional data to unique IDs, and supports prefix query based on partial dimensions. For example, the function f(a, b, c, ...)
needs to generate a unique ID, and f(a, b) != f(b, a)
. We also need to be able to query all mapping results prefixed with a specific dimension, such as querying all mappings starting with a
.
plan:
It is difficult to efficiently implement prefix query using a single HashMap directly. A more efficient solution is to use a tree structure, such as a Trie tree or a custom tree structure, with dimension information as keys and unique IDs as values.
Implementation steps:
- Dimensional data structure: Define a class to represent dimensional data, for example:
class Dimension { String a; String b; String c; // ... other dimensions public Dimension(String a, String b, String c) { this.a = a; this.b = b; this.c = c; } // equals() and hashCode() methods for HashMap comparison @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null || getClass() != obj.getClass()) return false; Dimension that = (Dimension) obj; return Objects.equals(a, that.a) && Objects.equals(b, that.b) && Objects.equals(c, that.c); } @Override public int hashCode() { return Objects.hash(a, b, c); } }
- Trie tree structure (example): Use Trie tree to store dimension information and ID mapping. Each node represents a dimension value, and the leaf node stores a unique ID.
class TrieNode { String value; Map<string trienode> children; String uniqueId; // Store unique ID at leaf nodes public TrieNode(String value) { this.value = value; this.children = new HashMap(); } } class Trie { TrieNode root; public Trie() { root = new TrieNode(""); } public void insert(Dimension dim, String uniqueId) { TrieNode node = root; node = insertRecursive(node, dim, uniqueId); } private TrieNode insertRecursive(TrieNode node, Dimension dim, String uniqueId) { if (dim == null) { node.uniqueId = uniqueId; return node; } if (dim.a != null) { node.children.computeIfAbsent(dim.a, k -> new TrieNode(k)); node = node.children.get(dim.a); if (dim.b != null) { node.children.computeIfAbsent(dim.b, k -> new TrieNode(k)); node = node.children.get(dim.b); if (dim.c != null) { node.children.computeIfAbsent(dim.c, k -> new TrieNode(k)); node = node.children.get(dim.c); } } } node.uniqueId = uniqueId; return node; } public List<string> prefixSearch(String prefix) { List<string> result = new ArrayList(); TrieNode node = root; for (String part : prefix.split(",")) { if (!node.children.containsKey(part)) { return result; // Prefix not found } node = node.children.get(part); } collectIds(node, result); return result; } private void collectIds(TrieNode node, List<string> result) { if (node.uniqueId != null) { result.add(node.uniqueId); } for (TrieNode child : node.children.values()) { collectIds(child, result); } } }</string></string></string></string>
- Example of usage:
public class Main { public static void main(String[] args) { Trie trie = new Trie(); trie.insert(new Dimension("a", "b", "c"), "u1"); trie.insert(new Dimension("a", "b", "d"), "u2"); trie.insert(new Dimension("x", "y", "z"), "v1"); List<string> results = trie.prefixSearch("a,b"); System.out.println(results); // Output: [u1, u2] results = trie.prefixSearch("a"); System.out.println(results); // Output: [u1, u2] results = trie.prefixSearch("x"); System.out.println(results); // Output: [v1] } }</string>
This example shows how to use a Trie tree to implement mapping and prefix query of multi-dimensional data to unique IDs. You can adjust the dimensional data structure and implementation details of the Trie tree according to actual needs. For very large data sets, consider using more advanced data structures and algorithms to optimize performance. For example, consider using database indexes to speed up queries.
The above is the detailed content of How to implement hash mapping and prefix query functions from multi-dimensional to unique values in Java?. For more information, please follow other related articles on the PHP Chinese website!

In Go programming, ways to effectively manage errors include: 1) using error values instead of exceptions, 2) using error wrapping techniques, 3) defining custom error types, 4) reusing error values for performance, 5) using panic and recovery with caution, 6) ensuring that error messages are clear and consistent, 7) recording error handling strategies, 8) treating errors as first-class citizens, 9) using error channels to handle asynchronous errors. These practices and patterns help write more robust, maintainable and efficient code.

Implementing concurrency in Go can be achieved by using goroutines and channels. 1) Use goroutines to perform tasks in parallel, such as enjoying music and observing friends at the same time in the example. 2) Securely transfer data between goroutines through channels, such as producer and consumer models. 3) Avoid excessive use of goroutines and deadlocks, and design the system reasonably to optimize concurrent programs.

Gooffersmultipleapproachesforbuildingconcurrentdatastructures,includingmutexes,channels,andatomicoperations.1)Mutexesprovidesimplethreadsafetybutcancauseperformancebottlenecks.2)Channelsofferscalabilitybutmayblockiffullorempty.3)Atomicoperationsareef

Go'serrorhandlingisexplicit,treatingerrorsasreturnedvaluesratherthanexceptions,unlikePythonandJava.1)Go'sapproachensureserrorawarenessbutcanleadtoverbosecode.2)PythonandJavauseexceptionsforcleanercodebutmaymisserrors.3)Go'smethodpromotesrobustnessand

WhentestingGocodewithinitfunctions,useexplicitsetupfunctionsorseparatetestfilestoavoiddependencyoninitfunctionsideeffects.1)Useexplicitsetupfunctionstocontrolglobalvariableinitialization.2)Createseparatetestfilestobypassinitfunctionsandsetupthetesten

Go'serrorhandlingreturnserrorsasvalues,unlikeJavaandPythonwhichuseexceptions.1)Go'smethodensuresexpliciterrorhandling,promotingrobustcodebutincreasingverbosity.2)JavaandPython'sexceptionsallowforcleanercodebutcanleadtooverlookederrorsifnotmanagedcare

AneffectiveinterfaceinGoisminimal,clear,andpromotesloosecoupling.1)Minimizetheinterfaceforflexibilityandeaseofimplementation.2)Useinterfacesforabstractiontoswapimplementationswithoutchangingcallingcode.3)Designfortestabilitybyusinginterfacestomockdep

Centralized error handling can improve the readability and maintainability of code in Go language. Its implementation methods and advantages include: 1. Separate error handling logic from business logic and simplify code. 2. Ensure the consistency of error handling by centrally handling. 3. Use defer and recover to capture and process panics to enhance program robustness.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

WebStorm Mac version
Useful JavaScript development tools

Dreamweaver Mac version
Visual web development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Mac version
God-level code editing software (SublimeText3)
