search

ML and EDA App Deployment

This Streamlit application offers a complete solution for Telco customer churn analysis and prediction. Let's explore its key features and functionality.

Application Components:

The application comprises three main modules: an authentication system, an Exploratory Data Analysis (EDA) dashboard, and a Telco churn prediction model.

1. Secure Authentication:

The authentication module (authenticationapp.py) provides a robust login system featuring:

  • Username and password-based login.
  • Integration with Google and Facebook for social login.
  • A welcoming message upon successful login.
  • An option to show/hide passwords.

2. Interactive EDA Dashboard:

The EDA dashboard (edaapp.py) facilitates comprehensive data exploration:

  • Supports CSV and Excel file uploads.
  • Utilizes data caching for faster performance.
  • Includes an intuitive navigation sidebar.
  • Adapts seamlessly to various screen sizes.

3. Telco Churn Prediction Engine:

The prediction module (telcochurnapp.py) incorporates a sophisticated data processing pipeline and multiple machine learning models:

Data Processing:

The pipeline handles data preprocessing steps including:

  • Missing value imputation using SimpleImputer.
  • Feature scaling with StandardScaler.
  • One-hot encoding for categorical features.

Machine Learning Models:

The application trains and utilizes several models:

  • Random Forest Classifier
  • Logistic Regression
  • Gradient Boosting Classifier

The system automatically evaluates model performance and provides real-time predictions, incorporating robust error handling.

Technical Details:

Model training leverages train_test_split for data partitioning and employs model caching (@st.cache_data) for efficiency. The code snippet below illustrates the model training process:

@st.cache_data
def train_models(_X, y):
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    models = {
        "Random Forest": RandomForestClassifier(random_state=42),
        "Logistic Regression": LogisticRegression(random_state=42),
        "Gradient Boosting": GradientBoostingClassifier(random_state=42)
    }
    # ... (rest of the training and evaluation logic)

User Experience:

The application boasts a user-friendly interface:

  • A wide-layout design for optimal viewing.
  • A convenient navigation sidebar.
  • Intuitive file upload functionality.
  • Real-time prediction display.

This application effectively combines advanced machine learning techniques with a streamlined user interface, providing a powerful tool for analyzing and predicting telco customer churn.

Acknowledgements:

The author expresses gratitude to Azubi Africa for their impactful training programs. For more information on Azubi Africa and their initiatives, please visit [link to Azubi Africa].

Tags: Azubi Data Science

The above is the detailed content of ML and EDA App Deployment. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python: compiler or Interpreter?Python: compiler or Interpreter?May 13, 2025 am 12:10 AM

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Python For Loop vs While Loop: When to Use Which?Python For Loop vs While Loop: When to Use Which?May 13, 2025 am 12:07 AM

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Python loops: The most common errorsPython loops: The most common errorsMay 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

For loop and while loop in Python: What are the advantages of each?For loop and while loop in Python: What are the advantages of each?May 13, 2025 am 12:01 AM

Forloopsareadvantageousforknowniterationsandsequences,offeringsimplicityandreadability;whileloopsareidealfordynamicconditionsandunknowniterations,providingcontrolovertermination.1)Forloopsareperfectforiteratingoverlists,tuples,orstrings,directlyacces

Python: A Deep Dive into Compilation and InterpretationPython: A Deep Dive into Compilation and InterpretationMay 12, 2025 am 12:14 AM

Pythonusesahybridmodelofcompilationandinterpretation:1)ThePythoninterpretercompilessourcecodeintoplatform-independentbytecode.2)ThePythonVirtualMachine(PVM)thenexecutesthisbytecode,balancingeaseofusewithperformance.

Is Python an interpreted or a compiled language, and why does it matter?Is Python an interpreted or a compiled language, and why does it matter?May 12, 2025 am 12:09 AM

Pythonisbothinterpretedandcompiled.1)It'scompiledtobytecodeforportabilityacrossplatforms.2)Thebytecodeistheninterpreted,allowingfordynamictypingandrapiddevelopment,thoughitmaybeslowerthanfullycompiledlanguages.

For Loop vs While Loop in Python: Key Differences ExplainedFor Loop vs While Loop in Python: Key Differences ExplainedMay 12, 2025 am 12:08 AM

Forloopsareidealwhenyouknowthenumberofiterationsinadvance,whilewhileloopsarebetterforsituationswhereyouneedtoloopuntilaconditionismet.Forloopsaremoreefficientandreadable,suitableforiteratingoversequences,whereaswhileloopsoffermorecontrolandareusefulf

For and While loops: a practical guideFor and While loops: a practical guideMay 12, 2025 am 12:07 AM

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.