search
HomeBackend DevelopmentPython TutorialHybridSimilarity Algorithm

HybridSimilarity Algorithm

A Deep Dive into the HybridSimilarity Algorithm

This article explores the HybridSimilarity algorithm, a sophisticated neural network designed to assess the similarity between text pairs. This hybrid model cleverly integrates lexical, phonetic, semantic, and syntactic comparisons for a comprehensive similarity score.

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
from sentence_transformers import SentenceTransformer
from Levenshtein import ratio as levenshtein_ratio
from phonetics import metaphone
import torch
import torch.nn as nn

class HybridSimilarity(nn.Module):
    def __init__(self):
        super().__init__()
        self.bert = SentenceTransformer('all-MiniLM-L6-v2')
        self.tfidf = TfidfVectorizer()
        self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
        self.fc = nn.Sequential(
            nn.Linear(1152, 256),
            nn.ReLU(),
            nn.LayerNorm(256),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def _extract_features(self, text1, text2):
        # Feature Extraction
        features = {}

        # Lexical Analysis
        features['levenshtein'] = levenshtein_ratio(text1, text2)
        features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))

        # Phonetic Analysis
        features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0

        # Semantic Analysis (BERT)
        emb1 = self.bert.encode(text1, convert_to_tensor=True)
        emb2 = self.bert.encode(text2, convert_to_tensor=True)
        features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()

        # Syntactic Analysis (LSA-TFIDF)
        tfidf_matrix = self.tfidf.fit_transform([text1, text2])
        svd = TruncatedSVD(n_components=1)
        lsa = svd.fit_transform(tfidf_matrix)
        features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]

        # Attention Mechanism
        att_output, _ = self.attention(
            emb1.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0)
        )
        features['attention_score'] = att_output.mean().item()

        return torch.tensor(list(features.values())).unsqueeze(0)

    def forward(self, text1, text2):
        features = self._extract_features(text1, text2)
        return self.fc(features).item()

def similarity_coefficient(text1, text2):
    model = HybridSimilarity()
    return model(text1, text2)

Core Components

The HybridSimilarity model relies on these key components:

  • Sentence Transformers: Utilizes pre-trained transformer models for semantic embedding generation.
  • Levenshtein Distance: Calculates lexical similarity based on character-level edits.
  • Metaphone: Determines phonetic similarity.
  • TF-IDF and Truncated SVD: Applies Latent Semantic Analysis (LSA) for syntactic similarity.
  • PyTorch: Provides the framework for building the custom neural network with attention mechanisms and fully connected layers.

Detailed Breakdown

1. Model Setup

The HybridSimilarity class, extending nn.Module, initializes:

  • A BERT-based sentence embedding model (all-MiniLM-L6-v2).
  • A TF-IDF vectorizer.
  • A multi-head attention mechanism.
  • A fully connected network to aggregate features and generate the final similarity score.
self.bert = SentenceTransformer('all-MiniLM-L6-v2')
self.tfidf = TfidfVectorizer()
self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
self.fc = nn.Sequential(
    nn.Linear(1152, 256),
    nn.ReLU(),
    nn.LayerNorm(256),
    nn.Linear(256, 1),
    nn.Sigmoid()
)
2. Feature Extraction

The _extract_features method computes several similarity features:

  • Lexical Similarity:
    • Levenshtein ratio: Quantifies the number of edits (insertions, deletions, substitutions) to transform one text into another.
    • Jaccard index: Measures the overlap of unique words in both texts.
features['levenshtein'] = levenshtein_ratio(text1, text2)
features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))
  • Phonetic Similarity:
    • Metaphone encoding: Compares phonetic representations.
features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0
  • Semantic Similarity:
    • BERT embeddings are generated, and cosine similarity is calculated.
emb1 = self.bert.encode(text1, convert_to_tensor=True)
emb2 = self.bert.encode(text2, convert_to_tensor=True)
features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()
  • Syntactic Similarity:
    • TF-IDF vectorizes the text, and LSA is applied using TruncatedSVD.
tfidf_matrix = self.tfidf.fit_transform([text1, text2])
svd = TruncatedSVD(n_components=1)
lsa = svd.fit_transform(tfidf_matrix)
features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]
  • Attention-based Feature:
    • Multi-head attention processes the embeddings, and the average attention score is used.
att_output, _ = self.attention(
    emb1.unsqueeze(0).unsqueeze(0),
    emb2.unsqueeze(0).unsqueeze(0),
    emb2.unsqueeze(0).unsqueeze(0)
)
features['attention_score'] = att_output.mean().item()
3. Neural Network Fusion

The extracted features are combined and fed into a fully connected neural network. This network outputs a similarity score (0-1).

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
from sentence_transformers import SentenceTransformer
from Levenshtein import ratio as levenshtein_ratio
from phonetics import metaphone
import torch
import torch.nn as nn

class HybridSimilarity(nn.Module):
    def __init__(self):
        super().__init__()
        self.bert = SentenceTransformer('all-MiniLM-L6-v2')
        self.tfidf = TfidfVectorizer()
        self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
        self.fc = nn.Sequential(
            nn.Linear(1152, 256),
            nn.ReLU(),
            nn.LayerNorm(256),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def _extract_features(self, text1, text2):
        # Feature Extraction
        features = {}

        # Lexical Analysis
        features['levenshtein'] = levenshtein_ratio(text1, text2)
        features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))

        # Phonetic Analysis
        features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0

        # Semantic Analysis (BERT)
        emb1 = self.bert.encode(text1, convert_to_tensor=True)
        emb2 = self.bert.encode(text2, convert_to_tensor=True)
        features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()

        # Syntactic Analysis (LSA-TFIDF)
        tfidf_matrix = self.tfidf.fit_transform([text1, text2])
        svd = TruncatedSVD(n_components=1)
        lsa = svd.fit_transform(tfidf_matrix)
        features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]

        # Attention Mechanism
        att_output, _ = self.attention(
            emb1.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0)
        )
        features['attention_score'] = att_output.mean().item()

        return torch.tensor(list(features.values())).unsqueeze(0)

    def forward(self, text1, text2):
        features = self._extract_features(text1, text2)
        return self.fc(features).item()

def similarity_coefficient(text1, text2):
    model = HybridSimilarity()
    return model(text1, text2)

Practical Application

The similarity_coefficient function initializes the model and computes the similarity between two input texts.

self.bert = SentenceTransformer('all-MiniLM-L6-v2')
self.tfidf = TfidfVectorizer()
self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
self.fc = nn.Sequential(
    nn.Linear(1152, 256),
    nn.ReLU(),
    nn.LayerNorm(256),
    nn.Linear(256, 1),
    nn.Sigmoid()
)

This returns a float between 0 and 1, representing the similarity.

Conclusion

The HybridSimilarity algorithm offers a robust approach to text similarity by integrating various aspects of text comparison. Its combination of lexical, phonetic, semantic, and syntactic analysis allows for a more comprehensive and nuanced understanding of text similarity, making it suitable for various applications, including duplicate detection, text clustering, and information retrieval.

The above is the detailed content of HybridSimilarity Algorithm. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Explain the performance differences in element-wise operations between lists and arrays.Explain the performance differences in element-wise operations between lists and arrays.May 06, 2025 am 12:15 AM

Arraysarebetterforelement-wiseoperationsduetofasteraccessandoptimizedimplementations.1)Arrayshavecontiguousmemoryfordirectaccess,enhancingperformance.2)Listsareflexiblebutslowerduetopotentialdynamicresizing.3)Forlargedatasets,arrays,especiallywithlib

How can you perform mathematical operations on entire NumPy arrays efficiently?How can you perform mathematical operations on entire NumPy arrays efficiently?May 06, 2025 am 12:15 AM

Mathematical operations of the entire array in NumPy can be efficiently implemented through vectorized operations. 1) Use simple operators such as addition (arr 2) to perform operations on arrays. 2) NumPy uses the underlying C language library, which improves the computing speed. 3) You can perform complex operations such as multiplication, division, and exponents. 4) Pay attention to broadcast operations to ensure that the array shape is compatible. 5) Using NumPy functions such as np.sum() can significantly improve performance.

How do you insert elements into a Python array?How do you insert elements into a Python array?May 06, 2025 am 12:14 AM

In Python, there are two main methods for inserting elements into a list: 1) Using the insert(index, value) method, you can insert elements at the specified index, but inserting at the beginning of a large list is inefficient; 2) Using the append(value) method, add elements at the end of the list, which is highly efficient. For large lists, it is recommended to use append() or consider using deque or NumPy arrays to optimize performance.

How can you make a Python script executable on both Unix and Windows?How can you make a Python script executable on both Unix and Windows?May 06, 2025 am 12:13 AM

TomakeaPythonscriptexecutableonbothUnixandWindows:1)Addashebangline(#!/usr/bin/envpython3)andusechmod xtomakeitexecutableonUnix.2)OnWindows,ensurePythonisinstalledandassociatedwith.pyfiles,oruseabatchfile(run.bat)torunthescript.

What should you check if you get a 'command not found' error when trying to run a script?What should you check if you get a 'command not found' error when trying to run a script?May 06, 2025 am 12:03 AM

When encountering a "commandnotfound" error, the following points should be checked: 1. Confirm that the script exists and the path is correct; 2. Check file permissions and use chmod to add execution permissions if necessary; 3. Make sure the script interpreter is installed and in PATH; 4. Verify that the shebang line at the beginning of the script is correct. Doing so can effectively solve the script operation problem and ensure the coding process is smooth.

Why are arrays generally more memory-efficient than lists for storing numerical data?Why are arrays generally more memory-efficient than lists for storing numerical data?May 05, 2025 am 12:15 AM

Arraysaregenerallymorememory-efficientthanlistsforstoringnumericaldataduetotheirfixed-sizenatureanddirectmemoryaccess.1)Arraysstoreelementsinacontiguousblock,reducingoverheadfrompointersormetadata.2)Lists,oftenimplementedasdynamicarraysorlinkedstruct

How can you convert a Python list to a Python array?How can you convert a Python list to a Python array?May 05, 2025 am 12:10 AM

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

Can you store different data types in the same Python list? Give an example.Can you store different data types in the same Python list? Give an example.May 05, 2025 am 12:10 AM

Python lists can store different types of data. The example list contains integers, strings, floating point numbers, booleans, nested lists, and dictionaries. List flexibility is valuable in data processing and prototyping, but it needs to be used with caution to ensure the readability and maintainability of the code.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Atom editor mac version download

Atom editor mac version download

The most popular open source editor