


As a prolific author, I encourage you to explore my books on Amazon. Remember to follow me on Medium for continued support. Thank you! Your support is invaluable!
Python's asynchronous capabilities have revolutionized web development. I've had the opportunity to work with several powerful libraries that fully utilize this potential. Let's delve into six key libraries that have significantly impacted asynchronous web development.
FastAPI has quickly become my preferred framework for high-performance API creation. Its speed, user-friendliness, and automatic API documentation are exceptional. FastAPI's use of Python type hints enhances code readability and enables automatic request validation and serialization.
Here's a straightforward FastAPI application example:
from fastapi import FastAPI app = FastAPI() @app.get("/") async def root(): return {"message": "Hello World"} @app.get("/items/{item_id}") async def read_item(item_id: int): return {"item_id": item_id}
This code establishes a basic API with two endpoints. The item_id
parameter's type hinting automatically validates its integer data type.
For both client-side and server-side asynchronous HTTP operations, aiohttp has proven consistently reliable. Its versatility extends from concurrent API requests to building complete web servers.
Here's how to use aiohttp as a client for multiple concurrent requests:
import aiohttp import asyncio async def fetch(session, url): async with session.get(url) as response: return await response.text() async def main(): urls = ['http://example.com', 'http://example.org', 'http://example.net'] async with aiohttp.ClientSession() as session: tasks = [fetch(session, url) for url in urls] responses = await asyncio.gather(*tasks) for url, response in zip(urls, responses): print(f"{url}: {len(response)} bytes") asyncio.run(main())
This script concurrently retrieves content from multiple URLs, showcasing asynchronous operation efficiency.
Sanic has impressed me with its Flask-like simplicity coupled with asynchronous performance. It's designed for developers familiar with Flask, while still leveraging the full potential of asynchronous programming.
A basic Sanic application:
from sanic import Sanic from sanic.response import json app = Sanic("MyApp") @app.route("/") async def test(request): return json({"hello": "world"}) if __name__ == "__main__": app.run(host="0.0.0.0", port=8000)
This establishes a simple JSON API endpoint, highlighting Sanic's clear syntax.
Tornado has been a dependable choice for creating scalable, non-blocking web applications. Its integrated networking library is particularly useful for long-polling and WebSockets.
Here's a Tornado WebSocket handler example:
import tornado.ioloop import tornado.web import tornado.websocket class EchoWebSocket(tornado.websocket.WebSocketHandler): def open(self): print("WebSocket opened") def on_message(self, message): self.write_message(u"You said: " + message) def on_close(self): print("WebSocket closed") if __name__ == "__main__": application = tornado.web.Application([ (r"/websocket", EchoWebSocket), ]) application.listen(8888) tornado.ioloop.IOLoop.current().start()
This code sets up a WebSocket server that mirrors received messages.
Quart has been transformative for projects requiring Flask application migration to asynchronous operation without a complete rewrite. Its API closely mirrors Flask's, ensuring a smooth transition.
A simple Quart application:
from quart import Quart, websocket app = Quart(__name__) @app.route('/') async def hello(): return 'Hello, World!' @app.websocket('/ws') async def ws(): while True: data = await websocket.receive() await websocket.send(f"echo {data}") if __name__ == '__main__': app.run()
This illustrates both standard and WebSocket routes, showcasing Quart's versatility.
Starlette serves as my preferred foundation for lightweight ASGI frameworks. As the basis for FastAPI, it excels in building high-performance asynchronous web services.
A basic Starlette application:
from starlette.applications import Starlette from starlette.responses import JSONResponse from starlette.routing import Route async def homepage(request): return JSONResponse({'hello': 'world'}) app = Starlette(debug=True, routes=[ Route('/', homepage), ])
This sets up a simple JSON API, highlighting Starlette's minimalist design.
Working with these asynchronous libraries has taught me several best practices for improved application performance and reliability.
For long-running tasks, background tasks or job queues are essential to prevent blocking the main event loop. Here's an example using FastAPI's BackgroundTasks
:
from fastapi import FastAPI app = FastAPI() @app.get("/") async def root(): return {"message": "Hello World"} @app.get("/items/{item_id}") async def read_item(item_id: int): return {"item_id": item_id}
This schedules log writing asynchronously, allowing immediate API response.
For database operations, asynchronous database drivers are crucial. Libraries like asyncpg
(PostgreSQL) and motor
(MongoDB) are invaluable.
When interacting with external APIs, asynchronous HTTP clients with proper error handling and retries are essential.
Regarding performance, FastAPI and Sanic generally offer superior raw performance for simple APIs. However, framework selection often depends on project needs and team familiarity.
FastAPI excels with automatic API documentation and request validation. Aiohttp provides greater control over HTTP client/server behavior. Sanic offers Flask-like simplicity with asynchronous capabilities. Tornado's integrated networking library is ideal for WebSockets and long-polling. Quart facilitates migrating Flask applications to asynchronous operation. Starlette is excellent for building custom frameworks or lightweight ASGI servers.
In summary, these six libraries have significantly enhanced my ability to build efficient, high-performance asynchronous web applications in Python. Each possesses unique strengths, and the optimal choice depends on the project's specific requirements. By utilizing these tools and adhering to asynchronous best practices, I've created highly concurrent, responsive, and scalable web applications.
101 Books
101 Books is an AI-powered publishing company co-founded by author Aarav Joshi. Our advanced AI technology keeps publishing costs exceptionally low—some books are priced as low as $4—making quality knowledge accessible to all.
Discover our book Golang Clean Code on Amazon.
Stay updated on our latest news. When searching for books, look for Aarav Joshi to find more titles. Use the provided link for special discounts!
Our Creations
Explore our creations:
Investor Central | Investor Central Spanish | Investor Central German | Smart Living | Epochs & Echoes | Puzzling Mysteries | Hindutva | Elite Dev | JS Schools
We are on Medium
Tech Koala Insights | Epochs & Echoes World | Investor Central Medium | Puzzling Mysteries Medium | Science & Epochs Medium | Modern Hindutva
The above is the detailed content of owerful Python Libraries for High-Performance Async Web Development. For more information, please follow other related articles on the PHP Chinese website!

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

The article discusses the role of virtual environments in Python, focusing on managing project dependencies and avoiding conflicts. It details their creation, activation, and benefits in improving project management and reducing dependency issues.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SublimeText3 Linux new version
SublimeText3 Linux latest version

SublimeText3 English version
Recommended: Win version, supports code prompts!
