Python version 3.5 introduces "type hints" to make the code more readable and facilitate developers to understand each other's code.
Why are type hints important?
In strongly typed languages such as Java and C, dependency inversion (DI - Dependency Inversion) is an important technology, but it is difficult to implement in weakly typed languages.
The core idea of dependency inversion is: classes should not rely on specific implementations, but on abstractions. Because abstractions (interfaces or abstract classes) are relatively stable contracts.
Bad example:
class GasStation: def fill_tank(car, amount): car.fill(amount)
In this example, the gas station can only refuel cars. To make matters worse, since function fill_tank
has no defined type, any value may be passed in and the error will only be discovered at runtime.
Good example:
from typing import Protocol class Vehicle(Protocol): def fill(amount: int) -> None: ... class GasStation: def fill_tank(vehicle: Vehicle, amount: int) -> None: vehicle.fill(amount)
In this example, first define the abstract class Vehicle
(using typing.Protocol
). The GasStation
function of fill_tank
no longer relies on a specific car class, but on the Vehicle
interface, thus becoming more general and can refuel any vehicle that implements the fill
method.
What is PyDIT?
I took advantage of Python's type hinting system and created a library that simplifies the use of dependency inversion, called PyDIT (Python Dependency Injection with Types).
Suppose you need a database interface for storing user data. Whether you use PostgreSQL, MySQL, OracleDB, in-memory database or NoSQL database, you need to implement a database connection class and provide the functions of reading, writing and deleting records.
from time import sleep from typing import TypedDict from typing_extensions import override from uuid import UUID from src.configs.di import pydit from src.adapters.repositories.interfaces.user import UserRepository from src.constants.injection import MEMORY_REPOSITORY_CONFIG_TOKEN from src.domain.user.models.user import UserModel class ConfigType(TypedDict): delay: int class MemoryUserRepository(UserRepository): __users: dict[UUID, UserModel] = {} def __init__(self): self.__delay = self.config.get("delay", 0.2) @pydit.inject(token=MEMORY_REPOSITORY_CONFIG_TOKEN) def config(self) -> ConfigType: # TODO: supress return type error pass @override def get_by_id(self, *, id_: UUID) -> UserModel: sleep(self.__delay) user = self.__users.get(id_) if user is None: raise ValueError("User not found") return user @override def save(self, *, data: UserModel) -> None: sleep(self.__delay) self._check_pk_conflict(pk=data.id) self.__users[data.id] = data @override def list_(self) -> list[UserModel]: return list(self.__users.values()) def _check_pk_conflict(self, *, pk: UUID) -> None: if pk not in self.__users: return raise ValueError("Primary key conflicts: DB alrady has a user with this ID")
In order to ensure that the code has nothing to do with database technology, define an interface that all database classes must follow:
from abc import abstractmethod from typing import Protocol from uuid import UUID from src.domain.user.models.user import UserModel class UserRepository(Protocol): @abstractmethod def get_by_id(self, *, id_: UUID) -> UserModel: pass @abstractmethod def save(self, *, data: UserModel) -> None: pass @abstractmethod def list_(self) -> list[UserModel]: pass
Next, initialize the dependencies for injection:
from src.adapters.repositories.in_memory.user import MemoryUserRepository from src.constants.injection import MEMORY_REPOSITORY_CONFIG_TOKEN from .di import pydit from .get_db_config import get_db_config def setup_dependencies(): pydit.add_dependency(get_db_config, token=MEMORY_REPOSITORY_CONFIG_TOKEN) pydit.add_dependency(MemoryUserRepository, "UserRepository")
Finally, inject the dependencies into the module that creates the user:
from typing import cast from src.adapters.repositories.interfaces.user import UserRepository from src.configs.di import pydit from src.domain.user.models.create_user import CreateUserModel from src.domain.user.models.user import UserModel from src.domain.user.services.create import CreateUserService from src.domain.user.services.list import ListUsersService class UserModule: @pydit.inject() def user_repository(self) -> UserRepository: return cast(UserRepository, None) def create(self, data: CreateUserModel) -> None: CreateUserService(self.user_repository).execute(data) def list_(self) -> list[UserModel]: return ListUsersService().execute()
Dependencies are injected as properties and can be accessed via self
or module.user_repository
.
This example is simple, but PyDIT can be applied to a variety of project configurations, code abstractions, and SOLID principle scenarios. Welcome to try and contribute code!
Code repository: Github
LinkedIn: Marcelo Almeida (MrM4rc)
PyPI: python-pydit
The above is the detailed content of The impact of typing in Python. For more information, please follow other related articles on the PHP Chinese website!

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

Forloopsareadvantageousforknowniterationsandsequences,offeringsimplicityandreadability;whileloopsareidealfordynamicconditionsandunknowniterations,providingcontrolovertermination.1)Forloopsareperfectforiteratingoverlists,tuples,orstrings,directlyacces

Pythonusesahybridmodelofcompilationandinterpretation:1)ThePythoninterpretercompilessourcecodeintoplatform-independentbytecode.2)ThePythonVirtualMachine(PVM)thenexecutesthisbytecode,balancingeaseofusewithperformance.

Pythonisbothinterpretedandcompiled.1)It'scompiledtobytecodeforportabilityacrossplatforms.2)Thebytecodeistheninterpreted,allowingfordynamictypingandrapiddevelopment,thoughitmaybeslowerthanfullycompiledlanguages.

Forloopsareidealwhenyouknowthenumberofiterationsinadvance,whilewhileloopsarebetterforsituationswhereyouneedtoloopuntilaconditionismet.Forloopsaremoreefficientandreadable,suitableforiteratingoversequences,whereaswhileloopsoffermorecontrolandareusefulf

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Dreamweaver CS6
Visual web development tools

WebStorm Mac version
Useful JavaScript development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
