search
HomeBackend DevelopmentPython TutorialPython: Refactoring to Patterns

Python: Refactoring to Patterns

Photo by Patric Ho

This concise guide maps Python code smells to their corresponding design pattern solutions.

class CodeSmellSolutions:
    DUPLICATED_CODE = [
        "form_template_method",
        "introduce_polymorphic_creation_with_factory_method",
        "chain_constructors",
        "replace_one__many_distinctions_with_composite",
        "extract_composite",
        "unify_interfaces_with_adapter",
        "introduce_null_object",
    ]
    LONG_METHOD = [
        "compose_method",
        "move_accumulation_to_collecting_parameter",
        "replace_conditional_dispatcher_with_command",
        "move_accumulation_to_visitor",
        "replace_conditional_logic_with_strategy",
    ]
    CONDITIONAL_COMPLEXITY = [  # Complex conditional logic
        "replace_conditional_logic_with_strategy",
        "move_emblishment_to_decorator",
        "replace_state_altering_conditionals_with_state",
        "introduce_null_object",
    ]
    PRIMITIVE_OBSESSION = [
        "replace_type_code_with_class",
        "replace_state_altering_conditionals_with_state",
        "replace_conditional_logic_with_strategy",
        "replace_implict_tree_with_composite",
        "replace_implicit_language_with_interpreter",
        "move_emblishment_to_decorator",
        "encapsulate_composite_with_builder",
    ]
    INDECENT_EXPOSURE = [  # Lack of information hiding
        "encapsulate_classes_with_factory"
    ]
    SOLUTION_SPRAWL = [  # Scattered logic/responsibility
        "move_creation_knowledge_to_factory"
    ]
    ALTERNATIVE_CLASSES_WITH_DIFFERENT_INTERFACES = [  # Similar classes, different interfaces
        "unify_interfaces_with_adapter"
    ]
    LAZY_CLASS = [  # Insufficient functionality
        "inline_singleton"
    ]
    LARGE_CLASS = [
        "replace_conditional_dispatcher_with_command",
        "replace_state_altering_conditionals_with_state",
        "replace_implict_tree_with_composite",
    ]
    SWITCH_STATEMENTS = [  # Complex switch statements
        "replace_conditional_dispatcher_with_command",
        "move_accumulation_to_visitor",
    ]
    COMBINATION_EXPLOSION = [  # Similar code for varying data
        "replace_implicit_language_with_interpreter"
    ]
    ODDBALL_SOLUTIONS = [  # Multiple solutions for same problem
        "unify_interfaces_with_adapter"
    ]

Refactoring Examples in Python

This project translates refactoring examples from Refactoring to Patterns (Joshua Kerievsky) into Python. Each example shows original and refactored code, highlighting improvements. The refactoring process involved interpreting UML diagrams and adapting Java code to Python's nuances (handling cyclic imports and interfaces).

Example: Compose Method

The "Compose Method" refactoring simplifies complex code by extracting smaller, more meaningful methods.

# Original (complex) code
def add(element):
    readonly = False
    size = 0
    elements = []
    if not readonly:
        new_size = size + 1
        if new_size > len(elements):
            new_elements = []
            for i in range(size):
                new_elements[i] = elements[i]  # Potential IndexError
            elements = new_elements
        size += 1
        elements[size] = element # Potential IndexError

# Refactored (simplified) code
def is_at_capacity(new_size, elements):
    return new_size > len(elements)

def grow_array(size, elements):
    new_elements = [elements[i] for i in range(size)] # List comprehension for clarity
    return new_elements

def add_element(elements, element, size):
    elements.append(element) # More Pythonic approach
    return len(elements) -1

def add_refactored(element):
    readonly = False
    if readonly:
        return
    size = len(elements)
    new_size = size + 1
    if is_at_capacity(new_size, elements):
        elements = grow_array(size, elements)
    size = add_element(elements, element, size)

Example: Polymorphism (Test Automation)

This example demonstrates polymorphism in test automation, abstracting test setup for reusability.

# Original code (duplicate setup)
class TestCase:
    pass

class DOMBuilder:
    def __init__(self, orders): pass
    def calc(self): return 42

class XMLBuilder:
    def __init__(self, orders): pass
    def calc(self): return 42

class DOMTest(TestCase):
    def run_dom_test(self):
        expected = 42
        builder = DOMBuilder("orders")
        assert builder.calc() == expected

class XMLTest(TestCase):
    def run_xml_test(self):
        expected = 42
        builder = XMLBuilder("orders")
        assert builder.calc() == expected

# Refactored code (polymorphic setup)
class OutputBuilder:
    def calc(self): raise NotImplementedError

class DOMBuilderRefac(OutputBuilder):
    def calc(self): return 42

class XMLBuilderRefac(OutputBuilder):
    def calc(self): return 42

class TestCaseRefac:
    def create_builder(self): raise NotImplementedError
    def run_test(self):
        expected = 42
        builder = self.create_builder()
        assert builder.calc() == expected

class DOMTestRefac(TestCaseRefac):
    def create_builder(self): return DOMBuilderRefac()

class XMLTestRefac(TestCaseRefac):
    def create_builder(self): return XMLBuilderRefac()

Example: Visitor Pattern

The Visitor pattern decouples classes from their methods.

# Original code (conditional logic in TextExtractor)
class Node: pass
class LinkTag(Node): pass
class Tag(Node): pass
class StringNode(Node): pass

class TextExtractor:
    def extract_text(self, nodes):
        result = []
        for node in nodes:
            if isinstance(node, StringNode): result.append("string")
            elif isinstance(node, LinkTag): result.append("linktag")
            elif isinstance(node, Tag): result.append("tag")
            else: result.append("other")
        return result

# Refactored code (using Visitor)
class NodeVisitor:
    def visit_link_tag(self, node): return "linktag"
    def visit_tag(self, node): return "tag"
    def visit_string_node(self, node): return "string"

class Node:
    def accept(self, visitor): pass

class LinkTagRefac(Node):
    def accept(self, visitor): return visitor.visit_link_tag(self)

class TagRefac(Node):
    def accept(self, visitor): return visitor.visit_tag(self)

class StringNodeRefac(Node):
    def accept(self, visitor): return visitor.visit_string_node(self)

class TextExtractorVisitor(NodeVisitor):
    def extract_text(self, nodes):
        result = [node.accept(self) for node in nodes]
        return result

Conclusion

This practical, hands-on approach to learning design patterns through refactoring significantly enhances understanding. The challenges encountered while translating the code solidify theoretical knowledge.

The above is the detailed content of Python: Refactoring to Patterns. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python: compiler or Interpreter?Python: compiler or Interpreter?May 13, 2025 am 12:10 AM

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Python For Loop vs While Loop: When to Use Which?Python For Loop vs While Loop: When to Use Which?May 13, 2025 am 12:07 AM

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Python loops: The most common errorsPython loops: The most common errorsMay 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

For loop and while loop in Python: What are the advantages of each?For loop and while loop in Python: What are the advantages of each?May 13, 2025 am 12:01 AM

Forloopsareadvantageousforknowniterationsandsequences,offeringsimplicityandreadability;whileloopsareidealfordynamicconditionsandunknowniterations,providingcontrolovertermination.1)Forloopsareperfectforiteratingoverlists,tuples,orstrings,directlyacces

Python: A Deep Dive into Compilation and InterpretationPython: A Deep Dive into Compilation and InterpretationMay 12, 2025 am 12:14 AM

Pythonusesahybridmodelofcompilationandinterpretation:1)ThePythoninterpretercompilessourcecodeintoplatform-independentbytecode.2)ThePythonVirtualMachine(PVM)thenexecutesthisbytecode,balancingeaseofusewithperformance.

Is Python an interpreted or a compiled language, and why does it matter?Is Python an interpreted or a compiled language, and why does it matter?May 12, 2025 am 12:09 AM

Pythonisbothinterpretedandcompiled.1)It'scompiledtobytecodeforportabilityacrossplatforms.2)Thebytecodeistheninterpreted,allowingfordynamictypingandrapiddevelopment,thoughitmaybeslowerthanfullycompiledlanguages.

For Loop vs While Loop in Python: Key Differences ExplainedFor Loop vs While Loop in Python: Key Differences ExplainedMay 12, 2025 am 12:08 AM

Forloopsareidealwhenyouknowthenumberofiterationsinadvance,whilewhileloopsarebetterforsituationswhereyouneedtoloopuntilaconditionismet.Forloopsaremoreefficientandreadable,suitableforiteratingoversequences,whereaswhileloopsoffermorecontrolandareusefulf

For and While loops: a practical guideFor and While loops: a practical guideMay 12, 2025 am 12:07 AM

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment