Home >Backend Development >Golang >Building a Semantic Search Engine with OpenAI, Go, and PostgreSQL (pgvector)
In recent years, vector embeddings have become the foundation of modern natural language processing (NLP) and semantic search. Instead of relying on keyword searches, vector databases compare the "meaning" of text through numerical representations (embeddings). This example demonstrates how to create a semantic search engine using OpenAI embedding, Go, and PostgreSQL with the pgvector extension.
Embedding is a vector representation of text (or other data) in a high-dimensional space. If two pieces of text are semantically similar, their vectors will be close to each other in this space. By storing embeddings in a database like PostgreSQL (with the pgvector extension), we can perform similarity searches quickly and accurately.
pgvector is a popular extension that adds vector data types to PostgreSQL. It enables you to:
Makefile containing tasks related to postgres/pgvector and Docker for local testing.
<code class="language-makefile">pgvector: @docker run -d \ --name pgvector \ -e POSTGRES_USER=admin \ -e POSTGRES_PASSWORD=admin \ -e POSTGRES_DB=vectordb \ -v pgvector_data:/var/lib/postgresql/data \ -p 5432:5432 \ pgvector/pgvector:pg17 psql: @psql -h localhost -U admin -d vectordb</code>
Make sure pgvector is installed. Then, in your PostgreSQL database:
<code class="language-sql">CREATE EXTENSION IF NOT EXISTS vector;</code>
Full code
<code class="language-go">package main import ( "context" "fmt" "log" "os" "strings" "github.com/jackc/pgx/v5/pgxpool" "github.com/joho/godotenv" "github.com/sashabaranov/go-openai" ) func floats32ToString(floats []float32) string { strVals := make([]string, len(floats)) for i, val := range floats { // 将每个浮点数格式化为字符串 strVals[i] = fmt.Sprintf("%f", val) } // 使用逗号 + 空格连接它们 joined := strings.Join(strVals, ", ") // pgvector 需要方括号表示法才能输入向量,例如 [0.1, 0.2, 0.3] return "[" + joined + "]" } func main() { // 加载环境变量 err := godotenv.Load() if err != nil { log.Fatal("加载 .env 文件出错") } // 创建连接池 dbpool, err := pgxpool.New(context.Background(), os.Getenv("DATABASE_URL")) if err != nil { fmt.Fprintf(os.Stderr, "无法创建连接池:%v\n", err) os.Exit(1) } defer dbpool.Close() // 1. 确保已启用 pgvector 扩展 _, err = dbpool.Exec(context.Background(), "CREATE EXTENSION IF NOT EXISTS vector;") if err != nil { log.Fatalf("创建扩展失败:%v\n", err) os.Exit(1) } // 2. 创建表(如果不存在) createTableSQL := ` CREATE TABLE IF NOT EXISTS documents ( id SERIAL PRIMARY KEY, content TEXT, embedding vector(1536) ); ` _, err = dbpool.Exec(context.Background(), createTableSQL) if err != nil { log.Fatalf("创建表失败:%v\n", err) } // 3. 创建索引(如果不存在) createIndexSQL := ` CREATE INDEX IF NOT EXISTS documents_embedding_idx ON documents USING ivfflat (embedding vector_l2_ops) WITH (lists = 100); ` _, err = dbpool.Exec(context.Background(), createIndexSQL) if err != nil { log.Fatalf("创建索引失败:%v\n", err) } // 4. 初始化 OpenAI 客户端 apiKey := os.Getenv("OPENAI_API_KEY") if apiKey == "" { log.Fatal("未设置 OPENAI_API_KEY") } openaiClient := openai.NewClient(apiKey) // 5. 插入示例文档 docs := []string{ "PostgreSQL 是一个先进的开源关系数据库。", "OpenAI 提供基于 GPT 的模型来生成文本嵌入。", "pgvector 允许将嵌入存储在 Postgres 数据库中。", } for _, doc := range docs { err = insertDocument(context.Background(), dbpool, openaiClient, doc) if err != nil { log.Printf("插入文档“%s”失败:%v\n", doc, err) } } // 6. 查询相似性 queryText := "如何在 Postgres 中存储嵌入?" similarDocs, err := searchSimilarDocuments(context.Background(), dbpool, openaiClient, queryText, 5) if err != nil { log.Fatalf("搜索失败:%v\n", err) } fmt.Println("=== 最相似的文档 ===") for _, doc := range similarDocs { fmt.Printf("- %s\n", doc) } } // insertDocument 使用 OpenAI API 为 `content` 生成嵌入,并将其插入 documents 表中。 func insertDocument(ctx context.Context, dbpool *pgxpool.Pool, client *openai.Client, content string) error { // 1) 从 OpenAI 获取嵌入 embedResp, err := client.CreateEmbeddings(ctx, openai.EmbeddingRequest{ Model: openai.AdaEmbeddingV2, // "text-embedding-ada-002" Input: []string{content}, }) if err != nil { return fmt.Errorf("CreateEmbeddings API 调用失败:%w", err) } // 2) 将嵌入转换为 pgvector 的方括号字符串 embedding := embedResp.Data[0].Embedding // []float32 embeddingStr := floats32ToString(embedding) // 3) 插入 PostgreSQL insertSQL := ` INSERT INTO documents (content, embedding) VALUES (, ::vector) ` _, err = dbpool.Exec(ctx, insertSQL, content, embeddingStr) if err != nil { return fmt.Errorf("插入文档失败:%w", err) } return nil } // searchSimilarDocuments 获取用户查询的嵌入,并根据向量相似性返回前 k 个相似的文档。 func searchSimilarDocuments(ctx context.Context, pool *pgxpool.Pool, client *openai.Client, query string, k int) ([]string, error) { // 1) 通过 OpenAI 获取用户查询的嵌入 embedResp, err := client.CreateEmbeddings(ctx, openai.EmbeddingRequest{ Model: openai.AdaEmbeddingV2, // "text-embedding-ada-002" Input: []string{query}, }) if err != nil { return nil, fmt.Errorf("CreateEmbeddings API 调用失败:%w", err) } // 2) 将 OpenAI 嵌入转换为 pgvector 的方括号字符串格式 queryEmbedding := embedResp.Data[0].Embedding // []float32 queryEmbeddingStr := floats32ToString(queryEmbedding) // 例如 "[0.123456, 0.789012, ...]" // 3) 构建按向量相似性排序的 SELECT 语句 selectSQL := fmt.Sprintf(` SELECT content FROM documents ORDER BY embedding <-> '%s'::vector LIMIT %d; `, queryEmbeddingStr, k) // 4) 运行查询 rows, err := pool.Query(ctx, selectSQL) if err != nil { return nil, fmt.Errorf("查询文档失败:%w", err) } defer rows.Close() // 5) 读取匹配的文档 var contents []string for rows.Next() { var content string if err := rows.Scan(&content); err != nil { return nil, fmt.Errorf("扫描行失败:%w", err) } contents = append(contents, content) } if err = rows.Err(); err != nil { return nil, fmt.Errorf("行迭代错误:%w", err) } return contents, nil }</code>
OpenAI embeddings in PostgreSQL, Go and pgvector provide a straightforward solution for building semantic search applications. By representing text as vectors and leveraging the power of database indexes, we move from traditional keyword-based searches to searching by context and meaning.
This revised output maintains the original language style, rephrases sentences for originality, and keeps the image in the same format and location. The code is also slightly improved for clarity and readability. The key changes include more descriptive variable names and comments.
The above is the detailed content of Building a Semantic Search Engine with OpenAI, Go, and PostgreSQL (pgvector). For more information, please follow other related articles on the PHP Chinese website!