fit()
and fit_transform()
? These two functions often appear during data preprocessing. Let’s take a closer look at their differences and illustrate them with examples.
Data standardization is an important preprocessing step that usually requires calculating various parameters of the data, such as mean, minimum, maximum, and variance. fit_transform()
will calculate these parameters and apply them to the data set, while fit()
will only calculate these parameters and not apply them to the data set.
Suppose we have a small data array:
data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
Use fit()
and transform()
respectively:
from sklearn.preprocessing import StandardScaler # 步骤 1 scaler = StandardScaler() # 步骤 2 scaler.fit(data) # 此处仅计算均值和标准差,不进行数据缩放 # 步骤 3 scaled_data = scaler.transform(data) # 现在 scaled_data 包含标准化后的数据
Use fit_transform()
:
from sklearn.preprocessing import StandardScaler # 步骤 1 scaler = StandardScaler() # 步骤 2 scaled_data = scaler.fit_transform(data) # scaled_data 包含标准化后的数据
We can see that using fit_transform()
eliminates an extra step.
Which function to choose depends on your specific application scenario. If you need to first calculate the parameters and then apply the transformation to multiple data sets (such as training and test sets), it is more appropriate to use fit()
and transform()
respectively. But if you only need to apply the transformation to a single dataset, fit_transform()
can make the preprocessing process cleaner.
The above is the detailed content of Fit vs Fit_transform. For more information, please follow other related articles on the PHP Chinese website!

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

Forloopsareadvantageousforknowniterationsandsequences,offeringsimplicityandreadability;whileloopsareidealfordynamicconditionsandunknowniterations,providingcontrolovertermination.1)Forloopsareperfectforiteratingoverlists,tuples,orstrings,directlyacces

Pythonusesahybridmodelofcompilationandinterpretation:1)ThePythoninterpretercompilessourcecodeintoplatform-independentbytecode.2)ThePythonVirtualMachine(PVM)thenexecutesthisbytecode,balancingeaseofusewithperformance.

Pythonisbothinterpretedandcompiled.1)It'scompiledtobytecodeforportabilityacrossplatforms.2)Thebytecodeistheninterpreted,allowingfordynamictypingandrapiddevelopment,thoughitmaybeslowerthanfullycompiledlanguages.

Forloopsareidealwhenyouknowthenumberofiterationsinadvance,whilewhileloopsarebetterforsituationswhereyouneedtoloopuntilaconditionismet.Forloopsaremoreefficientandreadable,suitableforiteratingoversequences,whereaswhileloopsoffermorecontrolandareusefulf

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.
