Welcome to the next pikoTutorial !
One of the simplest ways to perform symmetric encryption in Python is to use Fernet algorithm from cryptography module. Let's install it with command:
pip install cryptography
Having cryptography module available, let's write our first encryption script:
# import Fernet from cryptography.fernet import Fernet # Generate a key key = Fernet.generate_key() # Create a Fernet instance providing the generated key fernet = Fernet(key) # Encrypt the data data = b'Some secret data' encrypted_data = fernet.encrypt(data) # Decrypt the data decrypted_data = fernet.decrypt(encrypted_data) print(f"Decrypted text: {decrypted_data.decode()}")
Note for beginners: the key is necessary both when encrypting and decrypting the data, so you can't generate every time a new key. After encrypting the data, you need to store the key, but because it is something what allows you to decrypt the data, remember to store it in some secure way!
The key generated in the example above consists of random bytes. Such keys are very secure, however often you need your encryption to be password based - by password I mean some phrase which is easily understandable by humans and provided dynamically by the user as an input. Below you can find Python code showing how to get a password from the user as an input and how to turn it into the encryption key:
# import utility for Base64 encoding import base64 # import Fernet from cryptography.fernet import Fernet # import getpass for secure input reading from getpass import getpass # read plain text password plain_text_password: str = getpass(prompt='Password: ') # Fernet requires 32 byte key, so the password also must have 32 characters if len(plain_text_password) != 32: raise RuntimeError(f'Password length must be equal 32!') # Encode plain text password to ASCII bytes password_ascii: bytes = plain_text_password.encode('ascii') # Fernet requires key to be url-safe base64-encoded key: bytes = base64.urlsafe_b64encode(password_ascii) # Create a Fernet instance providing the generated key fernet = Fernet(key) # Encrypt the data data = b'Some secret data' encrypted_data = fernet.encrypt(data) # Decrypt the data decrypted_data = fernet.decrypt(encrypted_data) print(f"Decrypted text: {decrypted_data.decode()}")
Note for advanced: this pikoTutorial focuses on how to use Fernet for symmetric encryption, so it simplifies the encryption key creation. In practice, when you need to create an encryption key out of user-provided password, you should use Key Derivation Function like PBKDF2HMAC.
The above is the detailed content of Symmetric data encryption with Python. For more information, please follow other related articles on the PHP Chinese website!

The basic syntax for Python list slicing is list[start:stop:step]. 1.start is the first element index included, 2.stop is the first element index excluded, and 3.step determines the step size between elements. Slices are not only used to extract data, but also to modify and invert lists.

Listsoutperformarraysin:1)dynamicsizingandfrequentinsertions/deletions,2)storingheterogeneousdata,and3)memoryefficiencyforsparsedata,butmayhaveslightperformancecostsincertainoperations.

ToconvertaPythonarraytoalist,usethelist()constructororageneratorexpression.1)Importthearraymoduleandcreateanarray.2)Uselist(arr)or[xforxinarr]toconvertittoalist,consideringperformanceandmemoryefficiencyforlargedatasets.

ChoosearraysoverlistsinPythonforbetterperformanceandmemoryefficiencyinspecificscenarios.1)Largenumericaldatasets:Arraysreducememoryusage.2)Performance-criticaloperations:Arraysofferspeedboostsfortaskslikeappendingorsearching.3)Typesafety:Arraysenforc

In Python, you can use for loops, enumerate and list comprehensions to traverse lists; in Java, you can use traditional for loops and enhanced for loops to traverse arrays. 1. Python list traversal methods include: for loop, enumerate and list comprehension. 2. Java array traversal methods include: traditional for loop and enhanced for loop.

The article discusses Python's new "match" statement introduced in version 3.10, which serves as an equivalent to switch statements in other languages. It enhances code readability and offers performance benefits over traditional if-elif-el

Exception Groups in Python 3.11 allow handling multiple exceptions simultaneously, improving error management in concurrent scenarios and complex operations.

Function annotations in Python add metadata to functions for type checking, documentation, and IDE support. They enhance code readability, maintenance, and are crucial in API development, data science, and library creation.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 Mac version
God-level code editing software (SublimeText3)

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 Linux new version
SublimeText3 Linux latest version

Zend Studio 13.0.1
Powerful PHP integrated development environment
