search

mul in PyTorch

Jan 02, 2025 pm 09:48 PM

mul in PyTorch

Buy Me a Coffee☕

*Memos:

  • My post explains add().
  • My post explains sub().
  • My post explains div().
  • My post explains remainder().
  • My post explains fmod().

mul() can do multiplication with two of the 0D or more D tensors of zero or more elements or scalars or the 0D or more D tensor of zero or more elements and a scalar. getting the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • mul() can be used with torch or a tensor.
  • The 1st argument(input) with torch(Type:tensor or scalar of int, float, complex or bool) or using a tensor(Type:tensor of int, float, complex or bool)(Required).
  • The 2nd argument with torch or the 1st argument with a tensor is other(Required-Type:tensor or scalar of int, float, complex or bool).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • multiply() is the alias of mul().
import torch

tensor1 = torch.tensor([9, 7, 6])
tensor2 = torch.tensor([[4, -4, 3], [-2, 5, -5]])

torch.mul(input=tensor1, other=tensor2)
tensor1.mul(other=tensor2)
# tensor([[36, -28, 18], [-18, 35, -30]])

torch.mul(input=9, other=tensor2)
# tensor([[36, -36, 27], [-18, 45, -45]])

torch.mul(input=tensor1, other=4)
# tensor([36, 28, 24])

torch.mul(input=9, other=4)
# tensor(36)

tensor1 = torch.tensor([9., 7., 6.])
tensor2 = torch.tensor([[4., -4., 3.], [-2., 5., -5.]])

torch.mul(input=tensor1, other=tensor2)
# tensor([[36., -28., 18.], [-18., 35., -30.]])

torch.mul(input=9., other=tensor2)
# tensor([[36., -36., 27.], [-18., 45., -45.]])

torch.mul(input=tensor1, other=4.)
# tensor([36., 28., 24.])

torch.mul(input=9., other=4.)
# tensor(36.)

tensor1 = torch.tensor([9.+0.j, 7.+0.j, 6.+0.j])
tensor2 = torch.tensor([[4.+0.j, -4.+0.j, 3.+0.j],
                        [-2.+0.j, 5.+0.j, -5.+0.j]])
torch.mul(input=tensor1, other=tensor2)
# tensor([[36.+0.j, -28.+0.j, 18.+0.j],
#         [-18.+0.j, 35.+0.j, -30.+0.j]])

torch.mul(input=9.+0.j, other=tensor2)
# tensor([[36.+0.j, -36.+0.j, 27.+0.j],
#         [-18.+0.j, 45.+0.j, -45.+0.j]])

torch.mul(input=tensor1, other=4.+0.j)
# tensor([36.+0.j, 28.+0.j, 24.+0.j])

torch.mul(input=9.+0.j, other=4.+0.j)
# tensor(36.+0.j)

tensor1 = torch.tensor([True, False, True])
tensor2 = torch.tensor([[False, True, False], [True, False, True]])

torch.mul(input=tensor1, other=tensor2)
# tensor([[False, False, False],
#         [True, False, True]])

torch.mul(input=True, other=tensor2)
# tensor([[False, True, False], [True, False, True]])

torch.mul(input=tensor1, other=False)
# tensor([False, False, False])

torch.mul(input=True, other=False)
# tensor(False)

The above is the detailed content of mul in PyTorch. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python: compiler or Interpreter?Python: compiler or Interpreter?May 13, 2025 am 12:10 AM

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Python For Loop vs While Loop: When to Use Which?Python For Loop vs While Loop: When to Use Which?May 13, 2025 am 12:07 AM

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Python loops: The most common errorsPython loops: The most common errorsMay 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

For loop and while loop in Python: What are the advantages of each?For loop and while loop in Python: What are the advantages of each?May 13, 2025 am 12:01 AM

Forloopsareadvantageousforknowniterationsandsequences,offeringsimplicityandreadability;whileloopsareidealfordynamicconditionsandunknowniterations,providingcontrolovertermination.1)Forloopsareperfectforiteratingoverlists,tuples,orstrings,directlyacces

Python: A Deep Dive into Compilation and InterpretationPython: A Deep Dive into Compilation and InterpretationMay 12, 2025 am 12:14 AM

Pythonusesahybridmodelofcompilationandinterpretation:1)ThePythoninterpretercompilessourcecodeintoplatform-independentbytecode.2)ThePythonVirtualMachine(PVM)thenexecutesthisbytecode,balancingeaseofusewithperformance.

Is Python an interpreted or a compiled language, and why does it matter?Is Python an interpreted or a compiled language, and why does it matter?May 12, 2025 am 12:09 AM

Pythonisbothinterpretedandcompiled.1)It'scompiledtobytecodeforportabilityacrossplatforms.2)Thebytecodeistheninterpreted,allowingfordynamictypingandrapiddevelopment,thoughitmaybeslowerthanfullycompiledlanguages.

For Loop vs While Loop in Python: Key Differences ExplainedFor Loop vs While Loop in Python: Key Differences ExplainedMay 12, 2025 am 12:08 AM

Forloopsareidealwhenyouknowthenumberofiterationsinadvance,whilewhileloopsarebetterforsituationswhereyouneedtoloopuntilaconditionismet.Forloopsaremoreefficientandreadable,suitableforiteratingoversequences,whereaswhileloopsoffermorecontrolandareusefulf

For and While loops: a practical guideFor and While loops: a practical guideMay 12, 2025 am 12:07 AM

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools