linspace in PyTorch

Susan Sarandon
Susan SarandonOriginal
2025-01-01 13:15:10564browse

linspace in PyTorch

Buy Me a Coffee☕

*Memos:

  • My post explains arange().
  • My post explains logspace().

linspace() can create the 1D tensor of the zero or more integers, floating-point numbers or complex numbers evenly spaced between start and end(start<=x<=end) as shown below:

*Memos:

  • linspace() can be used with torch but not with a tensor.
  • The 1st argument with torch is start(Required-Type:int, float, complex or bool). *The 0D tensor of int, float, complex or bool also works.
  • The 2nd argument with torch is end(Required-Type:int, float, complex or bool). *The 0D tensor of int, float, complex or bool also works.
  • The 3rd argument with torch is steps(Required-Type:int): *Memos:
    • It must be greater than or equal to 0.
    • The 0D tensor of int also works.
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
    • If it's None, it's inferred from start, end or step, then for floating-point numbers, get_default_dtype() is used. *My post explains get_default_dtype() and set_default_dtype().
    • Setting start and end of integer type is not enough to create the 1D tensor of integer type so integer type with dtype must be set.
    • dtype= must be used.
    • My post explains dtype argument.
  • There is device argument with torch(Optional-Default:None-Type:str, int or device()): *Memos:
    • If it's None, get_default_device() is used. *My post explains get_default_device() and set_default_device().
    • device= must be used.
    • My post explains device argument.
  • There is requires_grad argument with torch(Optional-Default:False-Type:bool): *Memos:
    • requires_grad= must be used.
    • My post explains requires_grad argument.
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
import torch

torch.linspace(start=10, end=20, steps=0)
torch.linspace(start=20, end=10, steps=0)
# tensor([])

torch.linspace(start=10., end=20., steps=1)
tensor([10.])

torch.linspace(start=20, end=10, steps=1)
# tensor([20.])

torch.linspace(start=10., end=20., steps=2)
# tensor([10., 20.])

torch.linspace(start=20, end=10, steps=2)
# tensor([20., 10.])

torch.linspace(start=10., end=20., steps=3)
# tensor([10., 15., 20.])

torch.linspace(start=20, end=10, steps=3)
# tensor([20., 15., 10.])

torch.linspace(start=10., end=20., steps=4)
# tensor([10.0000, 13.3333, 16.6667, 20.0000])

torch.linspace(start=20., end=10., steps=4)
# tensor([20.0000, 16.6667, 13.3333, 10.0000])

torch.linspace(start=10, end=20, steps=4, dtype=torch.int64)
torch.linspace(start=torch.tensor(10),
               end=torch.tensor(20),
               steps=torch.tensor(4),
               dtype=torch.int64)
# tensor([10.0000, 13.3333, 16.6667, 20.0000])

torch.linspace(start=10.+6.j, end=20.+3.j, steps=4)
torch.linspace(start=torch.tensor(10.+6.j),
               end=torch.tensor(20.+3.j),
               steps=torch.tensor(4))
# tensor([10.0000+6.j, 13.3333+5.j, 16.6667+4.j, 20.0000+3.j])

torch.linspace(start=False, end=True, steps=4)
torch.linspace(start=torch.tensor(True),
               end=torch.tensor(False),
               steps=torch.tensor(4))
# tensor([0.0000, 0.3333, 0.6667, 1.0000])

torch.linspace(start=10, end=20, steps=4, dtype=torch.int64)
torch.linspace(start=torch.tensor(10),
               end=torch.tensor(20),
               steps=torch.tensor(4), dtype=torch.int64)
# tensor([10.0000, 13.3333, 16.6667, 20.0000])

The above is the detailed content of linspace in PyTorch. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn