search
HomeJavajavaTutorialHow to Coordinate the Completion of Multiple Concurrent SwingWorkers?

How to Coordinate the Completion of Multiple Concurrent SwingWorkers?

Waiting for multiple SwingWorkers

SwingWorker is a convenient way to perform background tasks and update the GUI from the worker thread. However, there may be situations where multiple SwingWorker instances are running concurrently, and it becomes necessary to coordinate their completion.

Consider the following code, where multiple SwingWorkers are created and executed in a loop:

import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.lang.reflect.InvocationTargetException;
import javax.swing.*;

public class TestApplet extends JApplet {

    @Override
    public void init() {
        try {
            SwingUtilities.invokeAndWait(new Runnable() {
                @Override
                public void run() {
                    createGUI();
                }
            });
        } catch (InterruptedException | InvocationTargetException ex) {
        }
    }

    private void createGUI() {
        getContentPane().setLayout(new FlowLayout());
        JButton startButton = new JButton("Do work");
        startButton.addActionListener(new ActionListener() {
            @Override
            public void actionPerformed(ActionEvent ae) {
                for (int i = 0; i () {
                        @Override
                        protected Void doInBackground() throws Exception {
                            // Do some work
                            return null;
                        }
                    }.execute();
                }
            }
        });
        getContentPane().add(startButton);
    }
}

When the "Do work" button is clicked, 10 SwingWorker instances are created and executed. Each SwingWorker performs some work in the background and updates the GUI when the work is done. However, there is no coordination between the SwingWorkers, which means they can complete in any order and may cause the GUI to update erratically, especially if the underlying tasks take varying amounts of time.

To ensure that the GUI updates in a consistent and predictable manner, it is important to coordinate the completion of the SwingWorkers. Several approaches can be used to achieve this, and the most suitable approach depends on the specific requirements of the application.

1. Barrier

A barrier is a synchronization mechanism that allows multiple threads to wait until all of them have reached a common point. In the context of SwingWorkers, a barrier can be used to ensure that the GUI updates only after all SwingWorkers have completed their tasks by doing this:

import java.lang.reflect.InvocationTargetException;
import java.util.concurrent.*;
import javax.swing.*;

public class TestApplet extends JApplet {

    private static final int NUM_WORKERS = 10;
    private static final ExecutorService EXECUTOR = Executors.newFixedThreadPool(NUM_WORKERS);
    private static final CyclicBarrier BARRIER = new CyclicBarrier(NUM_WORKERS, new Runnable() {

        @Override
        public void run() {
            // All SwingWorkers have completed, update the GUI
        }
    });

    @Override
    public void init() {
        try {
            SwingUtilities.invokeAndWait(new Runnable() {
                @Override
                public void run() {
                    createGUI();
                }
            });
        } catch (InterruptedException | InvocationTargetException ex) {
        }
    }

    private void createGUI() {
        JButton startButton = new JButton("Do work");
        startButton.addActionListener(new ActionListener() {
            @Override
            public void actionPerformed(ActionEvent ae) {
                for (int i = 0; i () {

                        @Override
                        protected Void doInBackground() throws Exception {
                            // Do some work
                            return null;
                        }

                        @Override
                        protected void done() {
                            BARRIER.await();
                        }
                    });
                }
            }
        });
        getContentPane().add(startButton);
    }
}

With this approach, the SwingWorkers execute their tasks concurrently, and the Java Virtual Machine (JVM) manages the thread pool and schedules the tasks for execution. When all SwingWorkers have completed their tasks, the barrier is triggered, and the run() method of the barrier is executed, which is responsible for updating the GUI.

2. CountDownLatch

A CountDownLatch is another synchronization mechanism that allows multiple threads to wait until a certain number of events have occurred. In the context of SwingWorkers, a CountDownLatch can be used to ensure that the GUI updates only after all SwingWorkers have completed their tasks as it is done like this:

import java.lang.reflect.InvocationTargetException;
import java.util.concurrent.*;
import javax.swing.*;

public class TestApplet extends JApplet {

    private static final int NUM_WORKERS = 10;
    private static final ExecutorService EXECUTOR = Executors.newFixedThreadPool(NUM_WORKERS);
    private static final CountDownLatch LATCH = new CountDownLatch(NUM_WORKERS);

    @Override
    public void init() {
        try {
            SwingUtilities.invokeAndWait(new Runnable() {
                @Override
                public void run() {
                    createGUI();
                }
            });
        } catch (InterruptedException | InvocationTargetException ex) {
        }
    }

    private void createGUI() {
        JButton startButton = new JButton("Do work");
        startButton.addActionListener(new ActionListener() {
            @Override
            public void actionPerformed(ActionEvent ae) {
                for (int i = 0; i () {

                        @Override
                        protected Void doInBackground() throws Exception {
                            // Do some work
                            return null;
                        }

                        @Override
                        protected void done() {
                            LATCH.countDown();
                        }
                    });
                }
            }
        });
        getContentPane().add(startButton);
    }

    private void updateGUI() {
        // Update the GUI
    }

    @Override
    public void run() {
        try {
            LATCH.await();
            updateGUI();
        } catch (InterruptedException ex) {
        }
    }
}

With this approach, the SwingWorkers execute their tasks concurrently, and the JVM manages the thread pool and schedules the tasks for execution. When all SwingWorkers have completed their tasks, the latch count reaches zero, which allows the run() method of the applet to continue execution and update the GUI.

3. Phaser

A Phaser is a synchronization

The above is the detailed content of How to Coordinate the Completion of Multiple Concurrent SwingWorkers?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Are there any emerging technologies that threaten or enhance Java's platform independence?Are there any emerging technologies that threaten or enhance Java's platform independence?Apr 24, 2025 am 12:11 AM

Emerging technologies pose both threats and enhancements to Java's platform independence. 1) Cloud computing and containerization technologies such as Docker enhance Java's platform independence, but need to be optimized to adapt to different cloud environments. 2) WebAssembly compiles Java code through GraalVM, extending its platform independence, but it needs to compete with other languages ​​for performance.

What are the different implementations of the JVM, and do they all provide the same level of platform independence?What are the different implementations of the JVM, and do they all provide the same level of platform independence?Apr 24, 2025 am 12:10 AM

Different JVM implementations can provide platform independence, but their performance is slightly different. 1. OracleHotSpot and OpenJDKJVM perform similarly in platform independence, but OpenJDK may require additional configuration. 2. IBMJ9JVM performs optimization on specific operating systems. 3. GraalVM supports multiple languages ​​and requires additional configuration. 4. AzulZingJVM requires specific platform adjustments.

How does platform independence reduce development costs and time?How does platform independence reduce development costs and time?Apr 24, 2025 am 12:08 AM

Platform independence reduces development costs and shortens development time by running the same set of code on multiple operating systems. Specifically, it is manifested as: 1. Reduce development time, only one set of code is required; 2. Reduce maintenance costs and unify the testing process; 3. Quick iteration and team collaboration to simplify the deployment process.

How does Java's platform independence facilitate code reuse?How does Java's platform independence facilitate code reuse?Apr 24, 2025 am 12:05 AM

Java'splatformindependencefacilitatescodereusebyallowingbytecodetorunonanyplatformwithaJVM.1)Developerscanwritecodeonceforconsistentbehavioracrossplatforms.2)Maintenanceisreducedascodedoesn'tneedrewriting.3)Librariesandframeworkscanbesharedacrossproj

How do you troubleshoot platform-specific issues in a Java application?How do you troubleshoot platform-specific issues in a Java application?Apr 24, 2025 am 12:04 AM

To solve platform-specific problems in Java applications, you can take the following steps: 1. Use Java's System class to view system properties to understand the running environment. 2. Use the File class or java.nio.file package to process file paths. 3. Load the local library according to operating system conditions. 4. Use VisualVM or JProfiler to optimize cross-platform performance. 5. Ensure that the test environment is consistent with the production environment through Docker containerization. 6. Use GitHubActions to perform automated testing on multiple platforms. These methods help to effectively solve platform-specific problems in Java applications.

How does the class loader subsystem in the JVM contribute to platform independence?How does the class loader subsystem in the JVM contribute to platform independence?Apr 23, 2025 am 12:14 AM

The class loader ensures the consistency and compatibility of Java programs on different platforms through unified class file format, dynamic loading, parent delegation model and platform-independent bytecode, and achieves platform independence.

Does the Java compiler produce platform-specific code? Explain.Does the Java compiler produce platform-specific code? Explain.Apr 23, 2025 am 12:09 AM

The code generated by the Java compiler is platform-independent, but the code that is ultimately executed is platform-specific. 1. Java source code is compiled into platform-independent bytecode. 2. The JVM converts bytecode into machine code for a specific platform, ensuring cross-platform operation but performance may be different.

How does the JVM handle multithreading on different operating systems?How does the JVM handle multithreading on different operating systems?Apr 23, 2025 am 12:07 AM

Multithreading is important in modern programming because it can improve program responsiveness and resource utilization and handle complex concurrent tasks. JVM ensures the consistency and efficiency of multithreads on different operating systems through thread mapping, scheduling mechanism and synchronization lock mechanism.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment