search
HomeBackend DevelopmentPython TutorialProject Mata Kuliah Artificial Intelligence - Face Expression Recognition

Short Explanation

The "Face Expression Recognition" project aims to recognize human facial expressions using the Convolutional Neural Network (CNN) method. The CNN algorithm is applied to analyze visual data such as facial images in grayscale format, which are then classified into seven basic expression categories: happy, sad, angry, surprised, afraid, disgusted, and neutral. This model was trained using the FER2013 dataset and managed to achieve an accuracy of 91.67% after training for 500 epochs.

Project Goals

This "Face Expression Recognition" project is the final project of the Artificial Intelligence course where in this project there are achievements that must be achieved including:

  1. Developing an artificial intelligence-based facial expression recognition system. This system is expected to be able to identify emotions radiating from facial expressions automatically and accurately.
  2. Experiment with machine learning algorithms to improve facial expression recognition accuracy. In this project, the CNN algorithm is tested to understand the extent to which this model is able to recognize complex patterns in facial images. This effort also includes optimizing model parameters, adding training data, and using data augmentation methods.

Tech Stack Used

  1. Framework: Python uses libraries such as TensorFlow/Keras for CNN implementation.
  2. Dataset: The dataset used is FER2013 (Facial Expression Recognition 2013), which contains 35,887 grayscale images of faces with dimensions of 48x48 pixels. These images come with labels covering seven basic expression categories.
  3. Tools: 
  • NumPy and Pandas for data manipulation.
  • Matplotlib for visualization.
  • Haar Cascade for face detection from camera.

Results

  1. Happy Project Mata Kuliah Artificial Intelligence - Face Expression Recognition
  2. Sad Project Mata Kuliah Artificial Intelligence - Face Expression Recognition
  3. Angry Project Mata Kuliah Artificial Intelligence - Face Expression Recognition
  4. Neutral Project Mata Kuliah Artificial Intelligence - Face Expression Recognition
  5. Surprised Project Mata Kuliah Artificial Intelligence - Face Expression Recognition
  6. Afraid Project Mata Kuliah Artificial Intelligence - Face Expression Recognition
  7. Disgusting Project Mata Kuliah Artificial Intelligence - Face Expression Recognition

The Problems and How I Deal With It

  1. The problem of differences in lighting which affects the level of accuracy. 
    Lighting variations can affect model accuracy. To overcome this, data normalization is carried out to ensure that the lighting in the image is more uniform so that patterns in facial images can be recognized better.

  2. Similar complexity of expressions.
    Some expressions, such as “scared” and “surprised,” have similar characteristics that are difficult for the model to differentiate. The solution implemented is to carry out data augmentation such as rotation, zooming, flipping, and contrast changes to increase the generalization ability of the model to new data.

  3. Quite limited dataset
    The FER2013 dataset, although quite large, does not cover the full range of face variations globally. To enrich the dataset, I used data augmentation techniques and added data from other relevant sources to create a better representation of facial expressions.

Lessons Learned

This project provides deep insight into how artificial intelligence-based systems can be used to recognize facial expressions. The development process shows the importance of:

  1. Data pre-processing to address lighting issues and improve data quality.
  2. Experiment training parameters to get the optimal combination, such as setting the number of epochs, learning rate, and batch size.
  3. Increased diversity of training data through augmentation to improve model performance against real-world data.

By overcoming existing challenges, this project succeeded in building a facial expression recognition model that can be applied to various applications such as human-computer interaction, emotion analysis, and psychological monitoring.

The above is the detailed content of Project Mata Kuliah Artificial Intelligence - Face Expression Recognition. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Are Python lists dynamic arrays or linked lists under the hood?Are Python lists dynamic arrays or linked lists under the hood?May 07, 2025 am 12:16 AM

Pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)Theyarestoredincontiguousmemoryblocks,whichmayrequirereallocationwhenappendingitems,impactingperformance.2)Linkedlistswouldofferefficientinsertions/deletionsbutslowerindexedaccess,leadingPytho

How do you remove elements from a Python list?How do you remove elements from a Python list?May 07, 2025 am 12:15 AM

Pythonoffersfourmainmethodstoremoveelementsfromalist:1)remove(value)removesthefirstoccurrenceofavalue,2)pop(index)removesandreturnsanelementataspecifiedindex,3)delstatementremoveselementsbyindexorslice,and4)clear()removesallitemsfromthelist.Eachmetho

What should you check if you get a 'Permission denied' error when trying to run a script?What should you check if you get a 'Permission denied' error when trying to run a script?May 07, 2025 am 12:12 AM

Toresolvea"Permissiondenied"errorwhenrunningascript,followthesesteps:1)Checkandadjustthescript'spermissionsusingchmod xmyscript.shtomakeitexecutable.2)Ensurethescriptislocatedinadirectorywhereyouhavewritepermissions,suchasyourhomedirectory.

How are arrays used in image processing with Python?How are arrays used in image processing with Python?May 07, 2025 am 12:04 AM

ArraysarecrucialinPythonimageprocessingastheyenableefficientmanipulationandanalysisofimagedata.1)ImagesareconvertedtoNumPyarrays,withgrayscaleimagesas2Darraysandcolorimagesas3Darrays.2)Arraysallowforvectorizedoperations,enablingfastadjustmentslikebri

For what types of operations are arrays significantly faster than lists?For what types of operations are arrays significantly faster than lists?May 07, 2025 am 12:01 AM

Arraysaresignificantlyfasterthanlistsforoperationsbenefitingfromdirectmemoryaccessandfixed-sizestructures.1)Accessingelements:Arraysprovideconstant-timeaccessduetocontiguousmemorystorage.2)Iteration:Arraysleveragecachelocalityforfasteriteration.3)Mem

Explain the performance differences in element-wise operations between lists and arrays.Explain the performance differences in element-wise operations between lists and arrays.May 06, 2025 am 12:15 AM

Arraysarebetterforelement-wiseoperationsduetofasteraccessandoptimizedimplementations.1)Arrayshavecontiguousmemoryfordirectaccess,enhancingperformance.2)Listsareflexiblebutslowerduetopotentialdynamicresizing.3)Forlargedatasets,arrays,especiallywithlib

How can you perform mathematical operations on entire NumPy arrays efficiently?How can you perform mathematical operations on entire NumPy arrays efficiently?May 06, 2025 am 12:15 AM

Mathematical operations of the entire array in NumPy can be efficiently implemented through vectorized operations. 1) Use simple operators such as addition (arr 2) to perform operations on arrays. 2) NumPy uses the underlying C language library, which improves the computing speed. 3) You can perform complex operations such as multiplication, division, and exponents. 4) Pay attention to broadcast operations to ensure that the array shape is compatible. 5) Using NumPy functions such as np.sum() can significantly improve performance.

How do you insert elements into a Python array?How do you insert elements into a Python array?May 06, 2025 am 12:14 AM

In Python, there are two main methods for inserting elements into a list: 1) Using the insert(index, value) method, you can insert elements at the specified index, but inserting at the beginning of a large list is inefficient; 2) Using the append(value) method, add elements at the end of the list, which is highly efficient. For large lists, it is recommended to use append() or consider using deque or NumPy arrays to optimize performance.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.