How to Hash Passwords Securely in Java
Securing passwords is crucial in any application that handles sensitive user information. Hashing passwords provides a one-way encryption method that prevents passwords from being decrypted and stored in plain text.
Scenario:
You want to hash passwords for storage in a database, adding a random salt for additional security.
Solution:
The Java Runtime Environment (JRE) includes a built-in facility for password hashing using PBKDF2 (Password-Based Key Derivation Function 2). This method offers robust password protection, and here's how to implement it:
SecureRandom random = new SecureRandom(); byte[] salt = new byte[16]; random.nextBytes(salt); KeySpec spec = new PBEKeySpec("password".toCharArray(), salt, 65536, 128); SecretKeyFactory f = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1"); byte[] hash = f.generateSecret(spec).getEncoded(); Base64.Encoder enc = Base64.getEncoder(); System.out.printf("salt: %s%n", enc.encodeToString(salt)); System.out.printf("hash: %s%n", enc.encodeToString(hash));
PBKDF2 takes a password, a random salt, and a cost parameter to compute the hash. The cost parameter controls the computational intensity of hashing, with higher costs resulting in slower hashing but stronger security.
To further enhance security, consider using a utility class like this one:
import java.security.NoSuchAlgorithmException; import java.security.SecureRandom; import java.security.spec.InvalidKeySpecException; import java.security.spec.KeySpec; import java.util.Arrays; import java.util.Base64; import java.util.regex.Matcher; import java.util.regex.Pattern; import javax.crypto.SecretKeyFactory; import javax.crypto.spec.PBEKeySpec; /** * Utility class for PBKDF2 password authentication */ public final class PasswordAuthentication { // Constants public static final String ID = "$"; public static final int DEFAULT_COST = 16; private static final String ALGORITHM = "PBKDF2WithHmacSHA1"; private static final int SIZE = 128; private static final Pattern layout = Pattern.compile("\\$(\d\d?)\$(.{43})"); // Instance variables private final SecureRandom random; private final int cost; /** * Constructor with default cost */ public PasswordAuthentication() { this(DEFAULT_COST); } /** * Constructor with specified cost * * @param cost the exponential computational cost of hashing a password, 0 to 30 */ public PasswordAuthentication(int cost) { iterations(cost); // Validate cost this.cost = cost; this.random = new SecureRandom(); } private static int iterations(int cost) { if ((cost 30)) { throw new IllegalArgumentException("cost: " + cost); } return 1 <p>This utility class provides methods for hashing passwords (hash) and authenticating users (authenticate). It uses a customizable computational cost parameter and incorporates a random salt for added protection. By utilizing this utility, you can securely store and verify passwords in your Java application.</p>
The above is the detailed content of How to Securely Hash Passwords in Java Using PBKDF2?. For more information, please follow other related articles on the PHP Chinese website!

Javaispopularforcross-platformdesktopapplicationsduetoits"WriteOnce,RunAnywhere"philosophy.1)ItusesbytecodethatrunsonanyJVM-equippedplatform.2)LibrarieslikeSwingandJavaFXhelpcreatenative-lookingUIs.3)Itsextensivestandardlibrarysupportscompr

Reasons for writing platform-specific code in Java include access to specific operating system features, interacting with specific hardware, and optimizing performance. 1) Use JNA or JNI to access the Windows registry; 2) Interact with Linux-specific hardware drivers through JNI; 3) Use Metal to optimize gaming performance on macOS through JNI. Nevertheless, writing platform-specific code can affect the portability of the code, increase complexity, and potentially pose performance overhead and security risks.

Java will further enhance platform independence through cloud-native applications, multi-platform deployment and cross-language interoperability. 1) Cloud native applications will use GraalVM and Quarkus to increase startup speed. 2) Java will be extended to embedded devices, mobile devices and quantum computers. 3) Through GraalVM, Java will seamlessly integrate with languages such as Python and JavaScript to enhance cross-language interoperability.

Java's strong typed system ensures platform independence through type safety, unified type conversion and polymorphism. 1) Type safety performs type checking at compile time to avoid runtime errors; 2) Unified type conversion rules are consistent across all platforms; 3) Polymorphism and interface mechanisms make the code behave consistently on different platforms.

JNI will destroy Java's platform independence. 1) JNI requires local libraries for a specific platform, 2) local code needs to be compiled and linked on the target platform, 3) Different versions of the operating system or JVM may require different local library versions, 4) local code may introduce security vulnerabilities or cause program crashes.

Emerging technologies pose both threats and enhancements to Java's platform independence. 1) Cloud computing and containerization technologies such as Docker enhance Java's platform independence, but need to be optimized to adapt to different cloud environments. 2) WebAssembly compiles Java code through GraalVM, extending its platform independence, but it needs to compete with other languages for performance.

Different JVM implementations can provide platform independence, but their performance is slightly different. 1. OracleHotSpot and OpenJDKJVM perform similarly in platform independence, but OpenJDK may require additional configuration. 2. IBMJ9JVM performs optimization on specific operating systems. 3. GraalVM supports multiple languages and requires additional configuration. 4. AzulZingJVM requires specific platform adjustments.

Platform independence reduces development costs and shortens development time by running the same set of code on multiple operating systems. Specifically, it is manifested as: 1. Reduce development time, only one set of code is required; 2. Reduce maintenance costs and unify the testing process; 3. Quick iteration and team collaboration to simplify the deployment process.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Linux new version
SublimeText3 Linux latest version

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.
