Home >Database >Mysql Tutorial >How to Simulate SQL's `ROW_NUMBER()` Function in Spark RDD?

How to Simulate SQL's `ROW_NUMBER()` Function in Spark RDD?

DDD
DDDOriginal
2024-12-22 09:41:57735browse

How to Simulate SQL's `ROW_NUMBER()` Function in Spark RDD?

SQL Row Number Equivalent in Spark RDD

In Spark, obtaining a row number equivalent to SQL's row_number() over (partition by ... order by ...) for an RDD can be achieved using Spark 1.4's enhanced functionality.

Solution:

  1. Create a Test RDD:
val sample_data = Seq(((3, 4), 5, 5, 5),
((3, 4), 5, 5, 9),
((3, 4), 7, 5, 5),
((1, 2), 1, 2, 3),
((1, 2), 1, 4, 7),
((1, 2), 2, 2, 3))

val temp1 = sc.parallelize(sample_data)
  1. Partition by Key and Order:

Utilize the rowNumber() function introduced in Spark 1.4 to create a partitioned window:

import org.apache.spark.sql.expressions.Window

val partitionedRdd = temp1
  .map(x => (x._1, x._2._1, x._2._2, x._2._3))
  .groupBy(_._1)
  .mapGroups((_, entries) =>
    entries.toList
      .sortBy(x => (x._2, -x._3, x._4))
      .zipWithIndex
      .map(x => (x._1._1, x._1._2, x._1._3, x._1._4, x._2 + 1))
  )
  1. Output the Result:
partitionedRdd.foreach(println)

// Example output:
// ((1,2),1,4,7,1)
// ((1,2),1,2,3,2)
// ((1,2),2,2,3,3)
// ((3,4),5,5,5,4)
// ((3,4),5,5,9,5)
// ((3,4),7,5,5,6)

The above is the detailed content of How to Simulate SQL's `ROW_NUMBER()` Function in Spark RDD?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn