


How Can Pandas' `groupby()` Function Calculate the Sum of Values Within Groups?
Understanding GroupBy for Aggregated Calculations in Pandas
When working with large datasets, pandas offers a powerful function called groupby() to group data by specific columns and perform calculations on the grouped data. In this context, let's explore how to utilize groupby() to calculate the sum of values within groups.
Consider the following dataframe, where we have details about fruit purchases by individuals over several dates:
| Fruit | Date | Name | Number | |---|---|---|---| | Apples | 10/6/2016 | Bob | 7 | | Apples | 10/6/2016 | Bob | 8 | | Apples | 10/6/2016 | Mike | 9 | | Apples | 10/7/2016 | Steve | 10 | | Apples | 10/7/2016 | Bob | 1 | | Oranges | 10/7/2016 | Bob | 2 | | Oranges | 10/6/2016 | Tom | 15 | | Oranges | 10/6/2016 | Mike | 57 | | Oranges | 10/6/2016 | Bob | 65 | | Oranges | 10/7/2016 | Tony | 1 | | Grapes | 10/7/2016 | Bob | 1 | | Grapes | 10/7/2016 | Tom | 87 | | Grapes | 10/7/2016 | Bob | 22 | | Grapes | 10/7/2016 | Bob | 12 | | Grapes | 10/7/2016 | Tony | 15 |
Goal: Calculate the Sum of Fruit Purchases Grouped by Name
We aim to calculate the total number of fruits purchased by each individual, grouping the data by both the fruit (Fruit) and the person's name (Name).
Solution: Using GroupBy.sum()
To achieve this, we employ the groupby() function with the columns for grouping:
result = df.groupby(['Fruit', 'Name']).sum()
The sum() method applied to the grouped data automatically aggregates the values in the specified column (in this case, Number represents the number of fruits purchased).
Output:
The output of the code provides us with the aggregated values:
| | Number | |----------------|--------| | Fruit | Name | | Apples | Bob | 16 | | | Mike | 9 | | | Steve | 10 | | Grapes | Bob | 35 | | | Tom | 87 | | | Tony | 15 | | Oranges | Bob | 67 | | | Mike | 57 | | | Tom | 15 | | | Tony | 1 |
Here, we can observe the total number of fruits purchased by each individual within each fruit category. For instance, in the 'Bob' group, the total number of 'Apples' purchased is 16, and the total 'Grapes' purchased is 35.
The above is the detailed content of How Can Pandas' `groupby()` Function Calculate the Sum of Values Within Groups?. For more information, please follow other related articles on the PHP Chinese website!

Arraysaregenerallymorememory-efficientthanlistsforstoringnumericaldataduetotheirfixed-sizenatureanddirectmemoryaccess.1)Arraysstoreelementsinacontiguousblock,reducingoverheadfrompointersormetadata.2)Lists,oftenimplementedasdynamicarraysorlinkedstruct

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

Python lists can store different types of data. The example list contains integers, strings, floating point numbers, booleans, nested lists, and dictionaries. List flexibility is valuable in data processing and prototyping, but it needs to be used with caution to ensure the readability and maintainability of the code.

Pythondoesnothavebuilt-inarrays;usethearraymoduleformemory-efficienthomogeneousdatastorage,whilelistsareversatileformixeddatatypes.Arraysareefficientforlargedatasetsofthesametype,whereaslistsofferflexibilityandareeasiertouseformixedorsmallerdatasets.

ThemostcommonlyusedmoduleforcreatingarraysinPythonisnumpy.1)Numpyprovidesefficienttoolsforarrayoperations,idealfornumericaldata.2)Arrayscanbecreatedusingnp.array()for1Dand2Dstructures.3)Numpyexcelsinelement-wiseoperationsandcomplexcalculationslikemea

ToappendelementstoaPythonlist,usetheappend()methodforsingleelements,extend()formultipleelements,andinsert()forspecificpositions.1)Useappend()foraddingoneelementattheend.2)Useextend()toaddmultipleelementsefficiently.3)Useinsert()toaddanelementataspeci

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

In the fields of finance, scientific research, medical care and AI, it is crucial to efficiently store and process numerical data. 1) In finance, using memory mapped files and NumPy libraries can significantly improve data processing speed. 2) In the field of scientific research, HDF5 files are optimized for data storage and retrieval. 3) In medical care, database optimization technologies such as indexing and partitioning improve data query performance. 4) In AI, data sharding and distributed training accelerate model training. System performance and scalability can be significantly improved by choosing the right tools and technologies and weighing trade-offs between storage and processing speeds.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Dreamweaver Mac version
Visual web development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.
