The dynamic nature of financial markets necessitates utilizing reliable data to develop and validate trading strategies. Efficiently incorporating high-quality data within backtesting environments is crucial for traders and analysts. TraderMade APIs empower these professionals by providing precise, detailed, and comprehensive market data.
This analysis leverages TraderMade's Time Series API to obtain historical data, execute a straightforward Simple Moving Average (SMA) crossover strategy, and evaluate its historical performance.
About SMA Crossover Strategy
The Simple Moving Average (SMA) Crossover Strategy is a fundamental technical analysis technique. It involves the observation of two SMAs: a short-term SMA, which exhibits higher sensitivity to price shifts, and a long-term SMA, which mitigates the impact of short-term price volatility.
A buy signal is generated when the short-term SMA surpasses the long-term SMA, signifying a potential upward trend. Conversely, a sell signal is triggered when the short-term SMA falls below the long-term SMA, indicating a potential downward trend.
Data Collection
Start by installing TraderMade's SDK as follows:
!pip install tradermade
We employ the installed Software Development Kit (SDK) to retrieve hourly time series data for foreign exchange (forex) pairs. The subsequent Python code exemplifies obtaining data for the EUR/USD currency pair.
import tradermade as tm import pandas as pd def fetch_forex_data(api_key, currency, start_date, end_date, interval="hourly", fields=["open", "high", "low", "close"]): # Set API key tm.set_rest_api_key(api_key) # Fetch the data data = tm.timeseries(currency=currency, start=start_date, end=end_date, interval=interval, fields=fields) # Convert data directly to DataFrame df = pd.DataFrame(data) # Convert 'date' column to datetime df["date"] = pd.to_datetime(df["date"]) # Set 'date' as the index df.set_index("date", inplace=True) return df # Adjust as needed api_key = "YOUR TRADERMADE API KEY" currency = "EURUSD" start_date = "2024-11-01-00:00" end_date = "2024-11-27-05:12" # Fetch the data and display the first few rows forex_data = fetch_forex_data(api_key, currency, start_date, end_date) forex_data = forex_data.rename(columns={"open": "Open", "high": "High", "low": "Low", "close": "Close"}) forex_data.head()
Data acquisition and preprocessing for backtesting have been successfully completed.
Implementation and Backtesting of a Simple SMA Crossover Strategy
This section utilizes the backtesting Python library to define and evaluate our SMA crossover strategy. For those unfamiliar with the backtesting library, it is considered a prominent and robust Python framework for backtesting technical trading strategies. These strategies encompass a diverse range, including SMA crossover, RSI crossover, mean-reversal strategies, momentum strategies, and others.
import numpy as np from backtesting import Backtest, Strategy from backtesting.lib import crossover from backtesting.test import SMA # Define the SMA crossover trading strategy class SMACrossoverStrategy(Strategy): def init(self): # Calculate shorter-period SMAs for limited data price = self.data.Close self.short_sma = self.I(SMA, price, 20) # Short window self.long_sma = self.I(SMA, price, 60) # Long window def next(self): # Check for crossover signals if crossover(self.short_sma, self.long_sma): self.buy() elif crossover(self.long_sma, self.short_sma): self.sell() # Initialize and run the backtest bt = Backtest(forex_data, SMACrossoverStrategy, cash=10000, commission=.002) result = bt.run() # Display the backtest results print("Backtest Results:") print(result)
The strategy employs two moving averages: a 20-period and a 60-period SMA. A buy order is executed when the short-term SMA surpasses the long-term SMA. Conversely, a sell order is triggered when the short-term SMA falls below the long-term SMA. Within a 25-day trading period, this straightforward strategy yielded a profit of $243 through six trades.
Equity and SMAs Curve Analysis
The subsequent Python code assesses the performance of the SMA crossover strategy. SMAs facilitate the visualization of price trends and identify crossover points that generate buy/sell signals. The equity curve serves as a performance metric, illustrating the impact of these signals on portfolio growth.
By integrating both curves, traders can readily observe the correlation between crossover events and changes in portfolio value, providing crucial insights into the efficacy of the SMA crossover strategy.
Plotly is utilized to visualize the equity and SMAs curves, enabling traders to evaluate their strategy's profitability effectively.
!pip install tradermade
Concluding Remarks
Successful backtesting necessitates accurate, high-frequency data, and TraderMade's APIs facilitate seamless integration. Regardless of your experience level – whether you are a novice exploring diverse strategies or an experienced analyst developing sophisticated models – the company's offerings provide the necessary tools.
Are you prepared to incorporate TraderMade's APIs into your workflow? Initiate your journey today and transform your concepts into reality.
The above is the detailed content of Backtest Like a Pro with a Forex API. For more information, please follow other related articles on the PHP Chinese website!

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver Mac version
Visual web development tools

Notepad++7.3.1
Easy-to-use and free code editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Mac version
God-level code editing software (SublimeText3)
