


Why Does Go's `for range` Loop Exhibit Different Behavior with Function Literals?
Understanding Different Loop Behavior in Go
When constructing loops in Go, it's crucial to understand the behavior of the for range loop. Consider the following two loop variations that exhibit distinct behavior:
Loop Variation 1:
func loop1() { actions := make(map[string]func()) for _, cmd := range cmds { actions[cmd] = func() { fmt.Println(cmd) } } for _, action := range actions { action() } }
Loop Variation 2:
func loop2() { actions := make(map[string]func()) for i, cmd := range cmds { command := cmds[i] actions[cmd] = func() { fmt.Println(command) } } for _, action := range actions { action() } }
Output Observations:
- Loop1 produces output: "update" (repeated 3 times)
- Loop2 produces output: "delete", "update", "create"
Underlying Issue in Loop Variation 1:
The problem lies in the func loop1() loop. Each loop iteration assigns a function literal to the actions map. This function literal references the loop variable cmd. However, there is only one instance of cmd, and when the loop finishes, it holds the last value in the commands slice, which is "update." This means that all enclosed functions reference the same loop variable (cmd), which results in all functions printing "update" when called.
Solution:
To rectify this, make a copy of the loop variable within each loop iteration, so each function literal has its own independent copy:
func loop1() { actions := make(map[string]func()) for _, cmd := range cmds { cmd2 := cmd actions[cmd] = func() { fmt.Println(cmd2) // Refer to the detached, copy variable! } } for _, action := range actions { action() } }
Conclusion:
In conclusion, when using the for range loop, it's critical to consider the scope and references of loop variables. Ensuring that copies of loop variables are made when necessary ensures correct behavior, particularly when dealing with function literals that reference those variables.
The above is the detailed content of Why Does Go's `for range` Loop Exhibit Different Behavior with Function Literals?. For more information, please follow other related articles on the PHP Chinese website!

In Go programming, ways to effectively manage errors include: 1) using error values instead of exceptions, 2) using error wrapping techniques, 3) defining custom error types, 4) reusing error values for performance, 5) using panic and recovery with caution, 6) ensuring that error messages are clear and consistent, 7) recording error handling strategies, 8) treating errors as first-class citizens, 9) using error channels to handle asynchronous errors. These practices and patterns help write more robust, maintainable and efficient code.

Implementing concurrency in Go can be achieved by using goroutines and channels. 1) Use goroutines to perform tasks in parallel, such as enjoying music and observing friends at the same time in the example. 2) Securely transfer data between goroutines through channels, such as producer and consumer models. 3) Avoid excessive use of goroutines and deadlocks, and design the system reasonably to optimize concurrent programs.

Gooffersmultipleapproachesforbuildingconcurrentdatastructures,includingmutexes,channels,andatomicoperations.1)Mutexesprovidesimplethreadsafetybutcancauseperformancebottlenecks.2)Channelsofferscalabilitybutmayblockiffullorempty.3)Atomicoperationsareef

Go'serrorhandlingisexplicit,treatingerrorsasreturnedvaluesratherthanexceptions,unlikePythonandJava.1)Go'sapproachensureserrorawarenessbutcanleadtoverbosecode.2)PythonandJavauseexceptionsforcleanercodebutmaymisserrors.3)Go'smethodpromotesrobustnessand

WhentestingGocodewithinitfunctions,useexplicitsetupfunctionsorseparatetestfilestoavoiddependencyoninitfunctionsideeffects.1)Useexplicitsetupfunctionstocontrolglobalvariableinitialization.2)Createseparatetestfilestobypassinitfunctionsandsetupthetesten

Go'serrorhandlingreturnserrorsasvalues,unlikeJavaandPythonwhichuseexceptions.1)Go'smethodensuresexpliciterrorhandling,promotingrobustcodebutincreasingverbosity.2)JavaandPython'sexceptionsallowforcleanercodebutcanleadtooverlookederrorsifnotmanagedcare

AneffectiveinterfaceinGoisminimal,clear,andpromotesloosecoupling.1)Minimizetheinterfaceforflexibilityandeaseofimplementation.2)Useinterfacesforabstractiontoswapimplementationswithoutchangingcallingcode.3)Designfortestabilitybyusinginterfacestomockdep

Centralized error handling can improve the readability and maintainability of code in Go language. Its implementation methods and advantages include: 1. Separate error handling logic from business logic and simplify code. 2. Ensure the consistency of error handling by centrally handling. 3. Use defer and recover to capture and process panics to enhance program robustness.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

WebStorm Mac version
Useful JavaScript development tools

Dreamweaver Mac version
Visual web development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Mac version
God-level code editing software (SublimeText3)
