


Why Do Slice Range Iterations in Go Sometimes Return Copies Instead of Addresses?
Understanding the Slice Range Phenomenon in Go
In Go, the behavior of slice ranges can be confusing. When iterating over a slice using a range clause, it's tempting to believe that the iteration variable holds the address of each element. However, this is not always the case. One such scenario is when working with structs and maps.
Consider the following code:
type student struct { Name string Age int } func main() { m := make(map[string]*student) s := []student{ {Name: "Allen", Age: 24}, {Name: "Tom", Age: 23}, } for _, stu := range s { m[stu.Name] = &stu } }
This code iterates over a slice of structs, adds a key-value pair to a map for each struct, and stores the address of the struct as the value. However, the resulting map shows that all values point to the same address.
To explain this phenomenon, we need to look at the underlying implementation of slice ranges. When a slice is iterated over using a range clause, the iteration variable receives a copy of the element from the slice. Thus, the iteration variable holds a copy of the struct, not its address.
To fix this issue and store the address of the struct in the map, the code must be modified to take the address of the slice element:
for i := range s { m[s[i].Name] = &s[i] }
This change ensures that the iteration variable holds the address of the struct, and the map will correctly store the addresses of each struct in the slice.
The above is the detailed content of Why Do Slice Range Iterations in Go Sometimes Return Copies Instead of Addresses?. For more information, please follow other related articles on the PHP Chinese website!

Golangisidealforbuildingscalablesystemsduetoitsefficiencyandconcurrency,whilePythonexcelsinquickscriptinganddataanalysisduetoitssimplicityandvastecosystem.Golang'sdesignencouragesclean,readablecodeanditsgoroutinesenableefficientconcurrentoperations,t

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Reasons for choosing Golang include: 1) high concurrency performance, 2) static type system, 3) garbage collection mechanism, 4) rich standard libraries and ecosystems, which make it an ideal choice for developing efficient and reliable software.

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Golang performs better in compilation time and concurrent processing, while C has more advantages in running speed and memory management. 1.Golang has fast compilation speed and is suitable for rapid development. 2.C runs fast and is suitable for performance-critical applications. 3. Golang is simple and efficient in concurrent processing, suitable for concurrent programming. 4.C Manual memory management provides higher performance, but increases development complexity.

Golang's application in web services and system programming is mainly reflected in its simplicity, efficiency and concurrency. 1) In web services, Golang supports the creation of high-performance web applications and APIs through powerful HTTP libraries and concurrent processing capabilities. 2) In system programming, Golang uses features close to hardware and compatibility with C language to be suitable for operating system development and embedded systems.

Golang and C have their own advantages and disadvantages in performance comparison: 1. Golang is suitable for high concurrency and rapid development, but garbage collection may affect performance; 2.C provides higher performance and hardware control, but has high development complexity. When making a choice, you need to consider project requirements and team skills in a comprehensive way.

Golang is suitable for high-performance and concurrent programming scenarios, while Python is suitable for rapid development and data processing. 1.Golang emphasizes simplicity and efficiency, and is suitable for back-end services and microservices. 2. Python is known for its concise syntax and rich libraries, suitable for data science and machine learning.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools