Understanding complex unpacking expressions
Consider the following expression:
a, b = 1, 2 # 简单序列赋值 a, b = ['green', 'blue'] # 列表赋值 a, b = 'XY' # 字符串赋值 a, b = range(1,5,2) # 任何可迭代对象都可以 # 嵌套序列赋值 (a,b), c = "XY", "Z" # a = 'X', b = 'Y', c = 'Z' (a,b), c = "XYZ" # 错误 -- 太多值需要拆包 (a,b), c = "XY" # 错误 -- 需要拆包的数值太少 (a,b), c, = [1,2],'this' # a = '1', b = '2', c = 'this' (a,b), (c,) = [1,2],'this' # 错误 -- 太多值需要拆包 # 扩展序列拆包 a, *b = 1,2,3,4,5 # a = 1, b = [2,3,4,5] *a, b = 1,2,3,4,5 # a = [1,2,3,4], b = 5 a, *b, c = 1,2,3,4,5 # a = 1, b = [2,3,4], c = 5 a, *b = 'X' # a = 'X', b = [] *a, b = 'X' # a = [], b = 'X' a, *b, c = "XY" # a = 'X', b = [], c = 'Y' a, *b, c = "X...Y" # a = 'X', b = ['.','.','.'], c = 'Y' a, b, *c = 1,2,3 # a = 1, b = 2, c = [3] a, b, c, *d = 1,2,3 # a = 1, b = 2, c = 3, d = [] a, *b, c, *d = 1,2,3,4,5 # 错误 -- 赋值中出现了两个星号表达式 (a,b), c = [1,2],'this' # a = '1', b = '2', c = 'this' (a,b), *c = [1,2],'this' # a = '1', b = '2', c = ['this'] (a,b), c, *d = [1,2],'this' # a = '1', b = '2', c = 'this', d = [] (a,b), *c, d = [1,2],'this' # a = '1', b = '2', c = [], d = 'this' (a,b), (c, *d) = [1,2],'this' # a = '1', b = '2', c = 't', d = ['h', 'i', 's'] *a = 1 # 错误 -- 目标必须在一个列表或元组中 *a = (1,2) # 错误 -- 目标必须在一个列表或元组中 *a, = (1,2) # a = [1,2] *a, = 1 # 错误 -- 'int' 对象不可迭代 *a, = [1] # a = [1] *a = [1] # 错误 -- 目标必须在一个列表或元组中 *a, = (1,) # a = [1] *a, = (1) # 错误 -- 'int' 对象不可迭代 *a, b = [1] # a = [], b = 1 *a, b = (1,) # a = [], b = 1 (a,b),c = 1,2,3 # 错误 -- 太多值需要拆包 (a,b), *c = 1,2,3 # 错误 - 'int' 对象不可迭代 (a,b), *c = 'XY', 2, 3 # a = 'X', b = 'Y', c = [2,3] # 扩展序列拆包 -- 嵌套 (a,b),c = 1,2,3 # 错误 -- 太多值需要拆包 *(a,b), c = 1,2,3 # a = 1, b = 2, c = 3 *(a,b) = 1,2 # 错误 -- 目标必须在一个列表或元组中 *(a,b), = 1,2 # a = 1, b = 2 *(a,b) = 'XY' # 错误 -- 目标必须在一个列表或元组中 *(a,b), = 'XY' # a = 'X', b = 'Y' *(a, b) = 'this' # 错误 -- 目标必须在一个列表或元组中 *(a, b), = 'this' # 错误 -- 拆包的值太多了 *(a, *b), = 'this' # a = 't', b = ['h', 'i', 's'] *(a, *b), c = 'this' # a = 't', b = ['h', 'i'], c = 's' *(a,*b), = 1,2,3,3,4,5,6,7 # a = 1, b = [2, 3, 3, 4, 5, 6, 7] *(a,*b), *c = 1,2,3,3,4,5,6,7 # 错误 -- 赋值中出现了两个星号表达式 *(a,*b), (*c,) = 1,2,3,3,4,5,6,7 # 错误 -- 'int' 对象不可迭代 *(a,*b), c = 1,2,3,3,4,5,6,7 # a = 1, b = [2, 3, 3, 4, 5, 6], c = 7 *(a,*b), (*c,) = 1,2,3,4,5,'XY' # a = 1, b = [2, 3, 4, 5], c = ['X', 'Y'] *(a,*b), c, d = 1,2,3,3,4,5,6,7 # a = 1, b = [2, 3, 3, 4, 5], c = 6, d = 7 *(a,*b), (c, d) = 1,2,3,3,4,5,6,7 # 错误 -- 'int' 对象不可迭代 *(a,*b), (*c, d) = 1,2,3,3,4,5,6,7 # 错误 -- 'int' 对象不可迭代 *(a,*b), *(c, d) = 1,2,3,3,4,5,6,7 # 错误 -- 赋值中出现了两个星号表达式 *(a,b), c = 'XY', 3 # 错误 -- 需要拆包的数值太少 *(*a,b), c = 'XY', 3 # a = [], b = 'XY', c = 3 (a,b), c = 'XY', 3 # a = 'X', b = 'Y', c = 3 *(a,b), c = 'XY', 3, 4 # a = 'XY', b = 3, c = 4 *(*a,b), c = 'XY', 3, 4 # a = ['XY'], b = 3, c = 4 (a,b), c = 'XY', 3, 4 # 错误 -- 拆包的值太多了
Manually derive the results of these expressions
Generalizing them is not difficult once you have a few basic rules. I'll do my best to explain with some examples. Since you mentioned "manually" evaluating these expressions, I would suggest some simple replacement rules. Basically, you'll find it easier to understand expressions where all iterables are formatted the same way.
For unpacking purposes only, the following substitutions are valid in rvalues (i.e. iterable objects):
'XY' -> ('X', 'Y') ['X', 'Y'] -> ('X', 'Y')
If you find a value is not unpacked, then you need to undo the substitution. (See below for further explanation.)
Also, when you see a "bare" comma, imagine there is a tuple at the top. Do this on the left and right sides (i.e. iterable and right iterable):
'X', 'Y' -> ('X', 'Y') a, b -> (a, b)
The above is the detailed content of How to Understand Complex Unpacking Expressions in Python?. For more information, please follow other related articles on the PHP Chinese website!

Pythonlistscanstoreanydatatype,arraymodulearraysstoreonetype,andNumPyarraysarefornumericalcomputations.1)Listsareversatilebutlessmemory-efficient.2)Arraymodulearraysarememory-efficientforhomogeneousdata.3)NumPyarraysareoptimizedforperformanceinscient

WhenyouattempttostoreavalueofthewrongdatatypeinaPythonarray,you'llencounteraTypeError.Thisisduetothearraymodule'sstricttypeenforcement,whichrequiresallelementstobeofthesametypeasspecifiedbythetypecode.Forperformancereasons,arraysaremoreefficientthanl

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

ThescriptisrunningwiththewrongPythonversionduetoincorrectdefaultinterpretersettings.Tofixthis:1)CheckthedefaultPythonversionusingpython--versionorpython3--version.2)Usevirtualenvironmentsbycreatingonewithpython3.9-mvenvmyenv,activatingit,andverifying

Pythonarrayssupportvariousoperations:1)Slicingextractssubsets,2)Appending/Extendingaddselements,3)Insertingplaceselementsatspecificpositions,4)Removingdeleteselements,5)Sorting/Reversingchangesorder,and6)Listcomprehensionscreatenewlistsbasedonexistin

NumPyarraysareessentialforapplicationsrequiringefficientnumericalcomputationsanddatamanipulation.Theyarecrucialindatascience,machinelearning,physics,engineering,andfinanceduetotheirabilitytohandlelarge-scaledataefficiently.Forexample,infinancialanaly

Useanarray.arrayoveralistinPythonwhendealingwithhomogeneousdata,performance-criticalcode,orinterfacingwithCcode.1)HomogeneousData:Arrayssavememorywithtypedelements.2)Performance-CriticalCode:Arraysofferbetterperformancefornumericaloperations.3)Interf

No,notalllistoperationsaresupportedbyarrays,andviceversa.1)Arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing,whichimpactsperformance.2)Listsdonotguaranteeconstanttimecomplexityfordirectaccesslikearraysdo.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

SublimeText3 Chinese version
Chinese version, very easy to use

Notepad++7.3.1
Easy-to-use and free code editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.
