


Using NumPy Array in Shared Memory for Multiprocessing
Introduction
Utilizing NumPy arrays in shared memory is essential for parallelizing computations using the multiprocessing module. However, accessing and manipulating shared memory arrays as NumPy arrays can be challenging. This article delves into a solution to this issue.
Problem Statement
Creating a shared NumPy array accessible from multiple processes requires employing the multiprocessing module. The challenge lies in enabling operations such as element-wise multiplication and array summations, which are inherently supported by NumPy but not directly through ctypes.
Solution
The key to resolving this issue is to convert the ctypes array representing the shared memory into a NumPy array. To achieve this, we utilize the frombuffer function from NumPy. The resulting NumPy array maintains its shared memory status, allowing for seamless access across processes.
Example
import multiprocessing as mp import numpy as np # Create a shared ctypes array shared_arr = mp.Array(ctypes.c_double, 10) # Convert the shared array to a NumPy array np_arr = np.frombuffer(shared_arr.get_obj()) # Perform operations on the NumPy array np_arr[0] = -np_arr[0] np_arr.sum()
This approach provides the functionality of both ctypes and NumPy, allowing you to access and manipulate the shared memory array with the flexibility of NumPy operations.
Synchronization
While the conversion to a NumPy array provides access to NumPy operations, it does not guarantee synchronized access. If multiple processes attempt to access shared memory simultaneously, it can lead to unexpected results. To prevent this, a locking mechanism should be implemented using shared_arr.get_lock().
Additional Notes
- Alternatively, one could use mp.sharedctypes.RawArray for creating shared arrays without synchronization.
- A NumPy array with a shared memory backing is not directly serializable using pickle or other standard serialization methods.
The above is the detailed content of How Can I Use NumPy Array Operations on Shared Memory in Multiprocessing?. For more information, please follow other related articles on the PHP Chinese website!

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

The article discusses the role of virtual environments in Python, focusing on managing project dependencies and avoiding conflicts. It details their creation, activation, and benefits in improving project management and reducing dependency issues.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

WebStorm Mac version
Useful JavaScript development tools

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)
