Ever feel overwhelmed while learning something new? Like you're drowning in information but not actually absorbing anything? We've all been there. Wouldn't it be awesome to have a personalized study companion that understands your level and explains things in a way that clicks? That's exactly what we're going to build together.
This tutorial will show you how to combine the BotHub API with PyQt5 to create an interactive and adaptable learning tool. It's not just another chatbot; it's more like a personal tutor, available 24/7.
Prepping Your Workspace
Before we start building, let's gather our tools. We'll need a few key Python libraries:
import os import datetime import json from dataclasses import dataclass from typing import List, Dict from openai import OpenAI from dotenv import load_dotenv from PyQt5.QtCore import Qt, QThread, pyqtSignal from PyQt5.QtGui import QMovie from PyQt5.QtWidgets import (QApplication, QWidget, QVBoxLayout, QHBoxLayout, QLabel, QLineEdit, QTextEdit, QRadioButton, QButtonGroup, QPushButton, QGroupBox, QListWidget, QListWidgetItem, QTabWidget, QFileDialog, QComboBox, QCheckBox, QMessageBox, QDialogButtonBox, QSpinBox, QFormLayout, QDialog, QDateEdit)
Think of these libraries as different parts of your toolkit. Some handle the basics, like file management (os), timekeeping (datetime), and data handling (json). Others, like dataclasses and typing, help us write clean, organized code. The real magic happens with openai, which lets us tap into the power of AI. dotenv keeps our sensitive information (like API keys) secure. And finally, PyQt5 helps us create a beautiful and intuitive user interface.
Crafting User Requests
To communicate with our AI, we'll create a UserRequest class. This helps organize the information the user provides:
@dataclass class UserRequest: query: str user_level: str preferences: Dict
Using the handy @dataclass decorator, we define three key pieces of information: the user's query (what they're asking), their user_level (beginner, intermediate, or advanced), and their preferences (like how long they want the response to be). This neatly packages everything into a single object.
Remembering User Sessions
To make the learning experience truly personalized, we need to remember what the user has done and how they like to learn. That's where the UserSession class comes in:
class UserSession: def __init__(self): self.history: List[Dict] = [] self.preferences: Dict = {} self.level: str = "beginner" def add_to_history(self, query, response): self.history.append({"query": query, "response": response, "timestamp": datetime.datetime.now().isoformat()}) def update_preferences(self, new_preferences): self.preferences.update(new_preferences)
A UserSession keeps track of the conversation history, the user's preferences, and their current level. It's like having a dedicated assistant who remembers everything and adapts to the user's needs.
The Brains of the Operation: EducationalAssistant
The EducationalAssistant class is the heart of our application. It's responsible for interacting with the BotHub API:
class EducationalAssistant: def __init__(self): load_dotenv() self.client = OpenAI(api_key=os.getenv('BOTHUB_API_KEY'), base_url='https://bothub.chat/api/v2/openai/v1') self.session = UserSession() def generate_prompt(self, request): prompt = f"""As an educational assistant, provide a response for a {request.user_level} level student. Query: {request.query}\n""" if request.preferences: prompt += "Consider these preferences:\n" for key, value in request.preferences.items(): if key == "response_length": prompt += f"Desired Length: Approximately {value} words\n" elif key == "include_examples" and value: prompt += "Include Examples: Yes\n" else: prompt += f"{key.capitalize()}: {value}\n" prompt += "Please provide a detailed explanation." return prompt def generate_text_response(self, request): try: response = self.client.chat.completions.create( model="claude-3.5-sonnet", // u can use any model in "Models available" on BotHub messages=[ {"role": "system", "content": "You are an educational assistant."}, {"role": "user", "content": self.generate_prompt(request)} ] ) return response.choices[0].message.content except Exception as e: return f"Error generating text response: {e}"
This class handles a few crucial tasks. First, it initializes the connection to BotHub using your API key (we talked about it previously). It also sets up a UserSession to keep track of the interaction. The generate_prompt method takes the user's request and transforms it into a prompt the API can understand. Finally, generate_text_response sends the prompt to the API and retrieves the AI-generated answer.
Smooth and Responsive: GenerateResponseThread
To avoid making the user wait while the AI is thinking, we'll use a separate thread for API calls:
import os import datetime import json from dataclasses import dataclass from typing import List, Dict from openai import OpenAI from dotenv import load_dotenv from PyQt5.QtCore import Qt, QThread, pyqtSignal from PyQt5.QtGui import QMovie from PyQt5.QtWidgets import (QApplication, QWidget, QVBoxLayout, QHBoxLayout, QLabel, QLineEdit, QTextEdit, QRadioButton, QButtonGroup, QPushButton, QGroupBox, QListWidget, QListWidgetItem, QTabWidget, QFileDialog, QComboBox, QCheckBox, QMessageBox, QDialogButtonBox, QSpinBox, QFormLayout, QDialog, QDateEdit)
This GenerateResponseThread, based on PyQt5's QThread, runs the API request in the background, ensuring that the user interface remains responsive.
Personalizing the Experience
Everyone learns differently. To cater to individual preferences, we'll create a PreferencesDialog:
@dataclass class UserRequest: query: str user_level: str preferences: Dict
This dialog allows users to customize settings like the AI's tone of voice, the desired response length, and whether to include examples. This level of customization ensures a more engaging and effective learning experience.
Building the Interface
Finally, let's create the user interface with the EducationalAssistantGUI class:
class UserSession: def __init__(self): self.history: List[Dict] = [] self.preferences: Dict = {} self.level: str = "beginner" def add_to_history(self, query, response): self.history.append({"query": query, "response": response, "timestamp": datetime.datetime.now().isoformat()}) def update_preferences(self, new_preferences): self.preferences.update(new_preferences)
This class builds the main window, which includes two tabs: "Chat" and "History." The "Chat" tab allows users to enter their queries, select their level, and see the AI's responses. The "History" tab displays past conversations, offering search and export functionalities.
Launching Your AI Study Buddy
Now, let's bring our creation to life:
class EducationalAssistant: def __init__(self): load_dotenv() self.client = OpenAI(api_key=os.getenv('BOTHUB_API_KEY'), base_url='https://bothub.chat/api/v2/openai/v1') self.session = UserSession() def generate_prompt(self, request): prompt = f"""As an educational assistant, provide a response for a {request.user_level} level student. Query: {request.query}\n""" if request.preferences: prompt += "Consider these preferences:\n" for key, value in request.preferences.items(): if key == "response_length": prompt += f"Desired Length: Approximately {value} words\n" elif key == "include_examples" and value: prompt += "Include Examples: Yes\n" else: prompt += f"{key.capitalize()}: {value}\n" prompt += "Please provide a detailed explanation." return prompt def generate_text_response(self, request): try: response = self.client.chat.completions.create( model="claude-3.5-sonnet", // u can use any model in "Models available" on BotHub messages=[ {"role": "system", "content": "You are an educational assistant."}, {"role": "user", "content": self.generate_prompt(request)} ] ) return response.choices[0].message.content except Exception as e: return f"Error generating text response: {e}"
Congratulations! You've built your own personalized AI learning assistant.
Now that you have a working app, think about how you could make it even better! The BotHub API offers a lot of flexibility. Instead of just text responses, you could integrate image generation or speech transcription. BotHub also gives you access to multiple AI models, allowing you to choose the best one for different tasks. Imagine your assistant being able to summarize complex topics, translate languages, or even generate practice quizzes! The possibilities are vast. You've built a solid foundation; now go forth and explore!
The above is the detailed content of Tutorial: Create Your Own AI Study Buddy. For more information, please follow other related articles on the PHP Chinese website!

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Python, a favorite for data science and processing, offers a rich ecosystem for high-performance computing. However, parallel programming in Python presents unique challenges. This tutorial explores these challenges, focusing on the Global Interprete

This tutorial demonstrates creating a custom pipeline data structure in Python 3, leveraging classes and operator overloading for enhanced functionality. The pipeline's flexibility lies in its ability to apply a series of functions to a data set, ge

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 English version
Recommended: Win version, supports code prompts!

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)
