In our globalized world, communication across linguistic boundaries is more essential than ever. In this article, we will explore how to implement this technology to make communication more inclusive and accessible to everyone.
The code is available here
on my github
First thing to do is install the dependencies
blinker==1.8.2 cachetools==5.5.0 certifi==2024.8.30 chardet==3.0.4 charset-normalizer==3.4.0 click==8.1.7 colorama==0.4.6 Flask==3.0.3 google-api-core==2.22.0 google-auth==2.36.0 google-cloud-texttospeech==2.21.0 googleapis-common-protos==1.65.0 googletrans==4.0.0rc1 grpcio==1.67.1 grpcio-status==1.67.1 gTTS==2.5.3 h11==0.9.0 h2==3.2.0 hpack==3.0.0 hstspreload==2024.11.1 httpcore==0.9.1 httpx==0.13.3 hyperframe==5.2.0 idna==2.10 itsdangerous==2.2.0 Jinja2==3.1.4 Levenshtein==0.26.1 MarkupSafe==3.0.2 playsound==1.2.2 prompt_toolkit==3.0.48 proto-plus==1.25.0 protobuf==5.28.3 pyasn1==0.6.1 pyasn1_modules==0.4.1 PyAudio==0.2.14 python-Levenshtein==0.26.1 RapidFuzz==3.10.1 requests==2.32.3 rfc3986==1.5.0 rsa==4.9 sniffio==1.3.1 SpeechRecognition==3.11.0 typing_extensions==4.12.2 urllib3==2.2.3 wcwidth==0.2.13 Werkzeug==3.1.2 wit==6.0.1
Audio to text conversion
from gtts import gTTS import playsound import os def speak_translation(text, lang): tts = gTTS(text=text, lang=lang) filename = "translation.mp3" tts.save(filename) playsound.playsound(filename) os.remove(filename)
Google cloud text Speech
from google.cloud import texttospeech def synthesize_speech(text, language_code="wo-WO", voice_name="wo-WO-Standard-A", output_file="output.mp3"): client = texttospeech.TextToSpeechClient() input_text = texttospeech.SynthesisInput(text=text) # Configurez la voix pour le Wolof voice = texttospeech.VoiceSelectionParams( language_code=language_code, name=voice_name, ssml_gender=texttospeech.SsmlVoiceGender.NEUTRAL, ) # Paramètres audio audio_config = texttospeech.AudioConfig( audio_encoding=texttospeech.AudioEncoding.MP3 ) # Synthèse vocale response = client.synthesize_speech( input=input_text, voice=voice, audio_config=audio_config ) # Sauvegarder le fichier audio with open(output_file, "wb") as out: out.write(response.audio_content) print(f"Audio content written to file {output_file}") # Utilisez cette fonction avec votre texte synthesize_speech("Bonjour, je teste la traduction en Wolof.", "wo-WO")
Translation
from googletrans import Translator def translate_text(text, target_lang): try: translator = Translator() translation = translator.translate(text, dest=target_lang) print(f"Traduction : {translation.text}") return translation.text except Exception as e: print(f"Erreur lors de la traduction : {e}") return "Traduction non disponible"
Voice detection
import speech_recognition as sr def record_audio(): recognizer = sr.Recognizer() with sr.Microphone() as source: print("Parlez maintenant...") audio = recognizer.listen(source) try: text = recognizer.recognize_google(audio, language="fr-FR") print(f"Vous avez dit : {text}") return text except sr.UnknownValueError: print("Désolé, je n'ai pas compris.") except sr.RequestError as e: print(f"Erreur de service : {e}")
Witai params:
You must go to the Meta API (Facebook) to create your token
import requests WIT_AI_TOKEN = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' def send_to_wit(text): headers = {'Authorization': f'Bearer {WIT_AI_TOKEN}'} response = requests.get(f'https://api.wit.ai/message?v=20230414&q={text}', headers=headers) return response.json()
The main file
from flask import Flask, request, jsonify from convertion_audio_to_text import speak_translation from translation import translate_text from voice_detection import record_audio from witai_params import send_to_wit import Levenshtein app = Flask(__name__) # Langues disponibles AVAILABLE_LANGUAGES = { "sw": "Swahili", "wo": "Wolof", "fon": "Fon", "en": "Anglais", "fr": "Français" } def calculate_score(reference_text, user_text): similarity = Levenshtein.ratio(reference_text.lower(), user_text.lower()) * 100 return round(similarity, 2) @app.route('/available_languages', methods=['GET']) def available_languages(): """Retourne les langues disponibles pour la traduction.""" return jsonify(AVAILABLE_LANGUAGES) @app.route('/process_audio', methods=['POST']) def process_audio(): """Traite l'audio, traduit le texte et évalue la prononciation.""" try: # Étape 1 : Récupérer la langue cible depuis la requête target_lang = request.json.get('target_lang') if not target_lang: return jsonify({"error": "Paramètre 'target_lang' manquant"}), 400 if target_lang not in AVAILABLE_LANGUAGES: return jsonify({ "error": f"Langue cible '{target_lang}' non supportée.", "available_languages": AVAILABLE_LANGUAGES # Retourner la liste des langues disponibles }), 400 # Étape 2 : Traduire le texte initial text = record_audio() if not text: return jsonify({"error": "No audio detected or transcription failed"}), 400 wit_response = send_to_wit(text) print("Wit.ai Response:", wit_response) translation = translate_text(text, target_lang) speak_translation(translation, lang=target_lang) # Étape 3 : Boucle de répétition pour évaluer la prononciation score = 0 while score = 80: message = "Bravo! Félicitations, vous êtes un génie!" return jsonify({ "original_text": text, "wit_response": wit_response, "translated_text": translation, "repeated_text": repeat_text, "score": score, "message": message }), 200 elif score <p>Designing a bot is becoming easier and easier today to solve complex problems in our daily lives. However, this does not exclude the importance of learning languages on your own. The use of technologies like BotAI for instant voice translation should primarily serve to enrich our interactions in complex contexts. By combining these tools with personal language learning, we promote more effective communication while promoting individual linguistic wealth.</p> <p>The code is available here <br> on my github</p>
The above is the detailed content of How to create a voice translation bot with witai. For more information, please follow other related articles on the PHP Chinese website!

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

The article discusses the role of virtual environments in Python, focusing on managing project dependencies and avoiding conflicts. It details their creation, activation, and benefits in improving project management and reducing dependency issues.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SublimeText3 Linux new version
SublimeText3 Linux latest version

SublimeText3 English version
Recommended: Win version, supports code prompts!
