


How Can I Efficiently Load Specific Worksheets from a Large Excel File with Pandas?
Loading Specific Worksheets from a Workbook Efficiently with Pandas
Pandas' pd.read_excel() function is a powerful tool for reading Excel workbooks. However, when working with large files that contain multiple worksheets, loading the entire workbook can be inefficient, especially if you only require data from a few specific sheets.
Understanding the Loading Process with pd.read_excel()
When using pd.read_excel() on a particular worksheet, it appears that the entire workbook is loaded into memory. This is because pandas internally uses an ExcelFile object to represent the workbook. The ExcelFile object parses the entire file during its initialization, regardless of which worksheet is specified.
Loading Specific Sheets Efficiently
To optimize the loading process, consider using the pd.ExcelFile object directly. By instantiating an ExcelFile object with the workbook path, you can access specific worksheets without reloading the entire file.
For instance:
xls = pd.ExcelFile('path_to_file.xls') df1 = pd.read_excel(xls, 'Sheet1') df2 = pd.read_excel(xls, 'Sheet2')
This approach loads the entire workbook only once during the creation of the ExcelFile object. Subsequent calls to pd.read_excel() will retrieve data from the specified worksheets without incurring the overhead of re-loading the file.
Loading Multiple Sheets
Additionally, you can specify a list of sheet names or indices to pd.read_excel() to load multiple sheets simultaneously. This returns a dictionary where the keys are the sheet names or indices, and the values are the corresponding data frames.
For example:
sheet_list = ['Sheet1', 'Sheet2'] df_dict = pd.read_excel(xls, sheet_list)
Loading All Sheets
If you need to load all worksheets in the workbook, set the sheet_name parameter to None:
df_dict = pd.read_excel(xls, sheet_name=None)
The above is the detailed content of How Can I Efficiently Load Specific Worksheets from a Large Excel File with Pandas?. For more information, please follow other related articles on the PHP Chinese website!

Arraysaregenerallymorememory-efficientthanlistsforstoringnumericaldataduetotheirfixed-sizenatureanddirectmemoryaccess.1)Arraysstoreelementsinacontiguousblock,reducingoverheadfrompointersormetadata.2)Lists,oftenimplementedasdynamicarraysorlinkedstruct

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

Python lists can store different types of data. The example list contains integers, strings, floating point numbers, booleans, nested lists, and dictionaries. List flexibility is valuable in data processing and prototyping, but it needs to be used with caution to ensure the readability and maintainability of the code.

Pythondoesnothavebuilt-inarrays;usethearraymoduleformemory-efficienthomogeneousdatastorage,whilelistsareversatileformixeddatatypes.Arraysareefficientforlargedatasetsofthesametype,whereaslistsofferflexibilityandareeasiertouseformixedorsmallerdatasets.

ThemostcommonlyusedmoduleforcreatingarraysinPythonisnumpy.1)Numpyprovidesefficienttoolsforarrayoperations,idealfornumericaldata.2)Arrayscanbecreatedusingnp.array()for1Dand2Dstructures.3)Numpyexcelsinelement-wiseoperationsandcomplexcalculationslikemea

ToappendelementstoaPythonlist,usetheappend()methodforsingleelements,extend()formultipleelements,andinsert()forspecificpositions.1)Useappend()foraddingoneelementattheend.2)Useextend()toaddmultipleelementsefficiently.3)Useinsert()toaddanelementataspeci

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

In the fields of finance, scientific research, medical care and AI, it is crucial to efficiently store and process numerical data. 1) In finance, using memory mapped files and NumPy libraries can significantly improve data processing speed. 2) In the field of scientific research, HDF5 files are optimized for data storage and retrieval. 3) In medical care, database optimization technologies such as indexing and partitioning improve data query performance. 4) In AI, data sharding and distributed training accelerate model training. System performance and scalability can be significantly improved by choosing the right tools and technologies and weighing trade-offs between storage and processing speeds.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

WebStorm Mac version
Useful JavaScript development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)
