


Loading Specific Worksheets from a Workbook Efficiently with Pandas
Pandas' pd.read_excel() function is a powerful tool for reading Excel workbooks. However, when working with large files that contain multiple worksheets, loading the entire workbook can be inefficient, especially if you only require data from a few specific sheets.
Understanding the Loading Process with pd.read_excel()
When using pd.read_excel() on a particular worksheet, it appears that the entire workbook is loaded into memory. This is because pandas internally uses an ExcelFile object to represent the workbook. The ExcelFile object parses the entire file during its initialization, regardless of which worksheet is specified.
Loading Specific Sheets Efficiently
To optimize the loading process, consider using the pd.ExcelFile object directly. By instantiating an ExcelFile object with the workbook path, you can access specific worksheets without reloading the entire file.
For instance:
xls = pd.ExcelFile('path_to_file.xls') df1 = pd.read_excel(xls, 'Sheet1') df2 = pd.read_excel(xls, 'Sheet2')
This approach loads the entire workbook only once during the creation of the ExcelFile object. Subsequent calls to pd.read_excel() will retrieve data from the specified worksheets without incurring the overhead of re-loading the file.
Loading Multiple Sheets
Additionally, you can specify a list of sheet names or indices to pd.read_excel() to load multiple sheets simultaneously. This returns a dictionary where the keys are the sheet names or indices, and the values are the corresponding data frames.
For example:
sheet_list = ['Sheet1', 'Sheet2'] df_dict = pd.read_excel(xls, sheet_list)
Loading All Sheets
If you need to load all worksheets in the workbook, set the sheet_name parameter to None:
df_dict = pd.read_excel(xls, sheet_name=None)
The above is the detailed content of How Can I Efficiently Load Specific Worksheets from a Large Excel File with Pandas?. For more information, please follow other related articles on the PHP Chinese website!

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

PDF files are popular for their cross-platform compatibility, with content and layout consistent across operating systems, reading devices and software. However, unlike Python processing plain text files, PDF files are binary files with more complex structures and contain elements such as fonts, colors, and images. Fortunately, it is not difficult to process PDF files with Python's external modules. This article will use the PyPDF2 module to demonstrate how to open a PDF file, print a page, and extract text. For the creation and editing of PDF files, please refer to another tutorial from me. Preparation The core lies in using external module PyPDF2. First, install it using pip: pip is P

This tutorial demonstrates how to leverage Redis caching to boost the performance of Python applications, specifically within a Django framework. We'll cover Redis installation, Django configuration, and performance comparisons to highlight the bene

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Python, a favorite for data science and processing, offers a rich ecosystem for high-performance computing. However, parallel programming in Python presents unique challenges. This tutorial explores these challenges, focusing on the Global Interprete

This tutorial demonstrates creating a custom pipeline data structure in Python 3, leveraging classes and operator overloading for enhanced functionality. The pipeline's flexibility lies in its ability to apply a series of functions to a data set, ge


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

Notepad++7.3.1
Easy-to-use and free code editor

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function
