


How to Upload a Large File (≥3GB) to FastAPI backend?
Using Requests-Toolbelt
When using the requests-toolbelt library, be sure to specify both the filename and the Content-Type header when declaring the field for upload_file. Here's an example:
filename = 'my_file.txt' m = MultipartEncoder(fields={'upload_file': (filename, open(filename, 'rb'))}) r = requests.post( url, data=m, headers={'Content-Type': m.content_type}, verify=False, ) print(r.request.headers) # confirm that the 'Content-Type' header has been set.
Using Python Requests/HTTPX
Another option is to use Python's requests or HTTPX libraries, which can both handle streaming file uploads efficiently. Here are examples for each:
Using requests:
import requests url = '...' filename = '...' with open(filename, 'rb') as file: r = requests.post( url, files={'upload_file': file}, headers={'Content-Type': 'multipart/form-data'}, )
Using HTTPX:
import httpx url = '...' filename = '...' with open(filename, 'rb') as file: r = httpx.post( url, files={'upload_file': file}, )
HTTPX automatically supports streaming file uploads, while requests require you to set the Content-Type header to 'multipart/form-data'.
Using FastAPI Stream() Method
FastAPI's .stream() method allows you to avoid loading a large file into memory by accessing the request body as a stream. To use this approach, follow these steps:
- Install the streaming-form-data library: This library provides a streaming parser for multipart/form-data data.
- Create a FastAPI endpoint: Use the .stream() method to parse the request body as a stream, and utilize the stream ing_form_data library to handle parsing multipart/form-data.
- Register Targets: Define FileTarget and ValueTarget objects to handle file and form data parsing, respectively.
Uploaded File Size Validation
To ensure that the uploaded file size does not exceed a specified limit, you can use a MaxSizeValidator. Here's an example:
from streaming_form_data import streaming_form_data from streaming_form_data import MaxSizeValidator FILE_SIZE_LIMIT = 1024 * 1024 * 1024 # 1 GB def validate_file_size(chunk: bytes): if FILE_SIZE_LIMIT > 0: streaming_form_data.validators.MaxSizeValidator( FILE_SIZE_LIMIT). __call__(chunk)
Implementing the Endpoint
Here's an example endpoint that incorporates these techniques:
from fastapi import FastAPI, File, Request from fastapi.responses import HTMLResponse from streaming_form_data.targets import FileTarget, ValueTarget from streaming_form_data import StreamingFormDataParser app = FastAPI() @app.post('/upload') async def upload(request: Request): # Parse the HTTP headers to retrieve the boundary string. parser = StreamingFormDataParser(headers=request.headers) # Register FileTarget and ValueTarget objects. file_ = FileTarget() data = ValueTarget() parser.register('upload_file', file_) parser.register('data', data) async for chunk in request.stream(): parser.data_received(chunk) # Validate file size (if necessary) validate_file_size(file_.content) # Process the uploaded file and data. return {'message': 'File uploaded successfully!'}
The above is the detailed content of How to Efficiently Upload Large Files (≥3GB) to a FastAPI Backend?. For more information, please follow other related articles on the PHP Chinese website!

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

Forloopsareadvantageousforknowniterationsandsequences,offeringsimplicityandreadability;whileloopsareidealfordynamicconditionsandunknowniterations,providingcontrolovertermination.1)Forloopsareperfectforiteratingoverlists,tuples,orstrings,directlyacces

Pythonusesahybridmodelofcompilationandinterpretation:1)ThePythoninterpretercompilessourcecodeintoplatform-independentbytecode.2)ThePythonVirtualMachine(PVM)thenexecutesthisbytecode,balancingeaseofusewithperformance.

Pythonisbothinterpretedandcompiled.1)It'scompiledtobytecodeforportabilityacrossplatforms.2)Thebytecodeistheninterpreted,allowingfordynamictypingandrapiddevelopment,thoughitmaybeslowerthanfullycompiledlanguages.

Forloopsareidealwhenyouknowthenumberofiterationsinadvance,whilewhileloopsarebetterforsituationswhereyouneedtoloopuntilaconditionismet.Forloopsaremoreefficientandreadable,suitableforiteratingoversequences,whereaswhileloopsoffermorecontrolandareusefulf

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 Chinese version
Chinese version, very easy to use

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Dreamweaver Mac version
Visual web development tools
