search
HomeBackend DevelopmentPython TutorialLLM Parallel Processing in Practice: Key Techniques for Performance Enhancement

LLM Parallel Processing in Practice: Key Techniques for Performance Enhancement

Key Points

  • Master parallel processing strategies in LLM applications
  • Implement efficient batch processing mechanisms
  • Build scalable document processing systems
  • Optimize system performance and resource utilization

Parallel Processing Use Cases

In LLM applications, parallel processing is particularly suitable for:

  • Batch document processing
  • Multi-model parallel inference
  • Large-scale data analysis
  • Real-time stream processing

Batch Processing Strategy Design

1. Basic Architecture

from typing import List, Dict, Any
from dataclasses import dataclass
import asyncio
from langchain.chat_models import ChatOpenAI
from langchain.callbacks import AsyncCallbackHandler

@dataclass
class BatchConfig:
    """Batch processing configuration"""
    batch_size: int = 5
    max_concurrent_tasks: int = 3
    timeout_seconds: int = 30
    retry_attempts: int = 2

class BatchProcessor:
    def __init__(self, config: BatchConfig):
        self.config = config
        self.llm = ChatOpenAI(
            temperature=0,
            request_timeout=config.timeout_seconds
        )
        self.semaphore = asyncio.Semaphore(
            config.max_concurrent_tasks
        )

    async def process_batch(
        self, 
        items: List[Any]
    ) -> List[Dict]:
        """Main batch processing function"""
        batches = self._create_batches(items)
        results = []

        for batch in batches:
            batch_results = await self._process_batch_with_semaphore(
                batch
            )
            results.extend(batch_results)

        return results

2. Asynchronous Processing Implementation

class AsyncBatchProcessor(BatchProcessor):
    async def _process_single_item(
        self, 
        item: Any
    ) -> Dict:
        """Process single item"""
        async with self.semaphore:
            for attempt in range(self.config.retry_attempts):
                try:
                    return await self._execute_processing(item)
                except Exception as e:
                    if attempt == self.config.retry_attempts - 1:
                        return self._create_error_response(item, e)
                    await asyncio.sleep(2 ** attempt)

    async def _execute_processing(
        self, 
        item: Any
    ) -> Dict:
        """Execute specific processing logic"""
        task = asyncio.create_task(
            self.llm.agenerate([item])
        )
        try:
            result = await asyncio.wait_for(
                task,
                timeout=self.config.timeout_seconds
            )
            return {
                "status": "success",
                "input": item,
                "result": result
            }
        except asyncio.TimeoutError:
            task.cancel()
            raise

Real-world Case: Batch Document Processing System

1. System Architecture

class DocumentBatchProcessor:
    def __init__(self):
        self.config = BatchConfig(
            batch_size=10,
            max_concurrent_tasks=5
        )
        self.processor = AsyncBatchProcessor(self.config)
        self.results_manager = ResultsManager()

    async def process_documents(
        self, 
        documents: List[str]
    ) -> Dict:
        """Process document batches"""
        try:
            preprocessed = await self._preprocess_documents(
                documents
            )
            results = await self.processor.process_batch(
                preprocessed
            )
            return await self.results_manager.merge_results(
                results
            )
        except Exception as e:
            return self._handle_batch_error(e, documents)

2. Resource Control Mechanism

class ResourceController:
    def __init__(self):
        self.token_limit = 4096
        self.request_limit = 100
        self._request_count = 0
        self._token_count = 0
        self._reset_time = None

    async def check_limits(self) -> bool:
        """Check resource limits"""
        await self._update_counters()
        return (
            self._request_count 



<h3>
  
  
  3. Results Merging Strategy
</h3>



<pre class="brush:php;toolbar:false">class ResultsManager:
    def __init__(self):
        self.merge_strategies = {
            "text": self._merge_text_results,
            "embeddings": self._merge_embedding_results,
            "classifications": self._merge_classification_results
        }

    async def merge_results(
        self, 
        results: List[Dict]
    ) -> Dict:
        """Merge processing results"""
        merged = {
            "success_count": 0,
            "error_count": 0,
            "results": []
        }

        for result in results:
            if result["status"] == "success":
                merged["success_count"] += 1
                merged["results"].append(
                    await self._process_result(result)
                )
            else:
                merged["error_count"] += 1

        return merged

Performance Optimization Guide

1. Memory Management

class MemoryManager:
    def __init__(self, max_memory_mb: int = 1024):
        self.max_memory = max_memory_mb * 1024 * 1024
        self.current_usage = 0

    async def monitor_memory(self):
        """Monitor memory usage"""
        import psutil
        process = psutil.Process()
        memory_info = process.memory_info()

        if memory_info.rss > self.max_memory:
            await self._trigger_memory_cleanup()

    async def _trigger_memory_cleanup(self):
        """Trigger memory cleanup"""
        import gc
        gc.collect()

2. Performance Monitoring

class PerformanceMonitor:
    def __init__(self):
        self.metrics = {
            "processing_times": [],
            "error_rates": [],
            "throughput": []
        }

    async def record_metrics(
        self, 
        batch_size: int, 
        duration: float, 
        errors: int
    ):
        """Record performance metrics"""
        self.metrics["processing_times"].append(duration)
        self.metrics["error_rates"].append(errors / batch_size)
        self.metrics["throughput"].append(
            batch_size / duration
        )

Best Practices

  1. Batch Processing Optimization

    • Dynamically adjust batch size based on system resources
    • Implement intelligent retry mechanisms
    • Monitor and optimize memory usage
  2. Concurrency Control

    • Use semaphores to limit concurrency
    • Implement request rate limiting
    • Set reasonable timeout values
  3. Error Handling

    • Implement tiered error handling
    • Record detailed error information
    • Provide graceful degradation options

Performance Tuning Points

  1. System Level

    • Monitor system resource usage
    • Optimize memory management
    • Implement load balancing
  2. Application Level

    • Optimize batch processing strategies
    • Adjust concurrency parameters
    • Implement caching mechanisms

Summary

Parallel processing is crucial for building high-performance LLM applications. Key takeaways:

  • Design efficient batch processing strategies
  • Implement robust resource management
  • Monitor and optimize system performance
  • Handle errors gracefully

The above is the detailed content of LLM Parallel Processing in Practice: Key Techniques for Performance Enhancement. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python: compiler or Interpreter?Python: compiler or Interpreter?May 13, 2025 am 12:10 AM

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Python For Loop vs While Loop: When to Use Which?Python For Loop vs While Loop: When to Use Which?May 13, 2025 am 12:07 AM

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Python loops: The most common errorsPython loops: The most common errorsMay 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

For loop and while loop in Python: What are the advantages of each?For loop and while loop in Python: What are the advantages of each?May 13, 2025 am 12:01 AM

Forloopsareadvantageousforknowniterationsandsequences,offeringsimplicityandreadability;whileloopsareidealfordynamicconditionsandunknowniterations,providingcontrolovertermination.1)Forloopsareperfectforiteratingoverlists,tuples,orstrings,directlyacces

Python: A Deep Dive into Compilation and InterpretationPython: A Deep Dive into Compilation and InterpretationMay 12, 2025 am 12:14 AM

Pythonusesahybridmodelofcompilationandinterpretation:1)ThePythoninterpretercompilessourcecodeintoplatform-independentbytecode.2)ThePythonVirtualMachine(PVM)thenexecutesthisbytecode,balancingeaseofusewithperformance.

Is Python an interpreted or a compiled language, and why does it matter?Is Python an interpreted or a compiled language, and why does it matter?May 12, 2025 am 12:09 AM

Pythonisbothinterpretedandcompiled.1)It'scompiledtobytecodeforportabilityacrossplatforms.2)Thebytecodeistheninterpreted,allowingfordynamictypingandrapiddevelopment,thoughitmaybeslowerthanfullycompiledlanguages.

For Loop vs While Loop in Python: Key Differences ExplainedFor Loop vs While Loop in Python: Key Differences ExplainedMay 12, 2025 am 12:08 AM

Forloopsareidealwhenyouknowthenumberofiterationsinadvance,whilewhileloopsarebetterforsituationswhereyouneedtoloopuntilaconditionismet.Forloopsaremoreefficientandreadable,suitableforiteratingoversequences,whereaswhileloopsoffermorecontrolandareusefulf

For and While loops: a practical guideFor and While loops: a practical guideMay 12, 2025 am 12:07 AM

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment