search
HomeBackend DevelopmentPython TutorialHow to efficiently combine date and time columns in Pandas with pd.to_datetime()?

How to efficiently combine date and time columns in Pandas with pd.to_datetime()?

Combining Date and Time Columns in Pandas with pd.to_datetime()

When working with date and time data in Pandas, it's often necessary to combine separate columns into a single datetime object. One way to do this is by using the pd.to_datetime() function.

Problem Statement

Consider a dataframe with 'Date' and 'Time' columns, as shown below:

Date      Time
01-06-2013  23:00:00
02-06-2013  01:00:00
02-06-2013  21:00:00
02-06-2013  22:00:00
02-06-2013  23:00:00
03-06-2013  01:00:00
03-06-2013  21:00:00
03-06-2013  22:00:00
03-06-2013  23:00:00
04-06-2013  01:00:00

Our goal is to combine these two columns into a single 'Date & Time' column.

Solution Using String Concatenation

One approach is to concatenate the 'Date' and 'Time' columns as strings and then convert the resulting string to a datetime object using pd.to_datetime():

result = pd.to_datetime(df['Date'] + ' ' + df['Time'])

This converts the concatenated string to a series of datetime objects.

Solution Using format Parameter

Alternatively, you can use the format parameter of pd.to_datetime() to specify the exact format of the combined string:

result = pd.to_datetime(df['Date'] + df['Time'], format='%m-%d-%Y %H:%M:%S')

This approach is faster than the previous one, especially when dealing with large datasets.

Performance Comparison

Using the %%timeit magic command, we can compare the performance of both approaches:

df = pd.concat([df for _ in range(1000000)]).reset_index(drop=True)

%timeit pd.to_datetime(df['Date'] + ' ' + df['Time'])

%timeit pd.to_datetime(df['Date'] + df['Time'], format='%m-%d-%Y %H:%M:%S')

The second approach with the format parameter is significantly faster for large datasets.

The above is the detailed content of How to efficiently combine date and time columns in Pandas with pd.to_datetime()?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

What are some popular Python libraries and their uses?What are some popular Python libraries and their uses?Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

Scraping Webpages in Python With Beautiful Soup: Search and DOM ModificationScraping Webpages in Python With Beautiful Soup: Search and DOM ModificationMar 08, 2025 am 10:36 AM

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

How to Create Command-Line Interfaces (CLIs) with Python?How to Create Command-Line Interfaces (CLIs) with Python?Mar 10, 2025 pm 06:48 PM

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

Explain the purpose of virtual environments in Python.Explain the purpose of virtual environments in Python.Mar 19, 2025 pm 02:27 PM

The article discusses the role of virtual environments in Python, focusing on managing project dependencies and avoiding conflicts. It details their creation, activation, and benefits in improving project management and reducing dependency issues.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.