


Three.js is a popular JavaScript library for creating 3D graphics in the browser. It's often used for creating interactive visualizations and games. One of the challenges with 3D graphics is rendering objects that are not opaque, such as clouds or smoke. These objects allow light to pass through them, which can create a softer, more realistic look.
In this case, the goal is to add an "atmosphere" effect to a representation of the Earth. The atmosphere will be a semi-transparent layer that surrounds the Earth and scatters light, giving it a more realistic appearance.
To achieve this effect, we'll create a fragment shader that will compute the color of each pixel in the atmosphere based on its position in the atmosphere and the direction of the light source. The fragment shader will use a technique called "atmospheric scattering" to simulate the way that light is scattered by particles in the atmosphere.
Here is the fragment shader code:
#ifdef GL_FRAGMENT_PRECISION_HIGH precision highp float; #else precision mediump float; #endif uniform vec3 lightDirection; uniform sampler2D earthTexture; varying vec2 vUv; varying vec3 vNormal; void main() { // Compute the surface normal at this position vec3 normal = normalize(vNormal); // Compute the direction from this point to the light source vec3 lightDir = normalize(lightDirection); // Compute the amount of light that is scattered in this direction float scattering = dot(normal, lightDir); // Compute the color of the atmosphere at this position vec3 color = texture2D(earthTexture, vUv).rgb * scattering; // Output the color gl_FragColor = vec4(color, 1.0); }
This fragment shader takes several inputs:
- lightDirection: The direction to the light source.
- earthTexture: The texture used to represent the Earth.
- vUv: The texture coordinates for the current pixel.
- vNormal: The normal vector for the current pixel.
The fragment shader first computes the surface normal at the current pixel. It then computes the direction from the current pixel to the light source. These two values are used to compute the amount of light that is scattered in the direction of the pixel.
The fragment shader then computes the color of the atmosphere at the current pixel by multiplying the color of the Earth texture by the amount of scattering. The resulting color is output as the fragment color.
To use this fragment shader, we need to create a material that uses it. Here is an example of a material that uses the atmospheric scattering fragment shader:
const material = new THREE.ShaderMaterial({ fragmentShader: ` #ifdef GL_FRAGMENT_PRECISION_HIGH precision highp float; #else precision mediump float; #endif uniform vec3 lightDirection; uniform sampler2D earthTexture; varying vec2 vUv; varying vec3 vNormal; void main() { vec3 normal = normalize(vNormal); vec3 lightDir = normalize(lightDirection); float scattering = dot(normal, lightDir); vec3 color = texture2D(earthTexture, vUv).rgb * scattering; gl_FragColor = vec4(color, 1.0); } `, uniforms: { lightDirection: { value: new THREE.Vector3(0, 1, 0) }, earthTexture: { value: new THREE.TextureLoader().load('earth.jpg') } } });
This material takes two uniforms:
- lightDirection: The direction to the light source.
- earthTexture: The texture used to represent the Earth.
The material uses the lightDirection uniform to compute the amount of light that is scattered in each direction. It uses the earthTexture uniform to represent the surface of the Earth.
To use this material, we need to create a mesh and assign it to the material. Here is an example of how to create a mesh and assign it to the material:
const geometry = new THREE.SphereGeometry(10, 32, 32); const material = new THREE.ShaderMaterial({ fragmentShader: ` #ifdef GL_FRAGMENT_PRECISION_HIGH precision highp float; #else precision mediump float; #endif uniform vec3 lightDirection; uniform sampler2D earthTexture; varying vec2 vUv; varying vec3 vNormal; void main() { vec3 normal = normalize(vNormal); vec3 lightDir = normalize(lightDirection); float scattering = dot(normal, lightDir); vec3 color = texture2D(earthTexture, vUv).rgb * scattering; gl_FragColor = vec4(color, 1.0); } `, uniforms: { lightDirection: { value: new THREE.Vector3(0, 1, 0) }, earthTexture: { value: new THREE.TextureLoader().load('earth.jpg') } } }); const mesh = new THREE.Mesh(geometry, material);
This code creates a sphere geometry with a radius of 10, 32 segments, and 32 rings. It then creates a material that uses the atmospheric scattering fragment shader. Finally, it creates a mesh and assigns it to the material.
Once the mesh has been created, it can be added to the scene. Here is an example of how to add the mesh to the scene:
#ifdef GL_FRAGMENT_PRECISION_HIGH precision highp float; #else precision mediump float; #endif uniform vec3 lightDirection; uniform sampler2D earthTexture; varying vec2 vUv; varying vec3 vNormal; void main() { // Compute the surface normal at this position vec3 normal = normalize(vNormal); // Compute the direction from this point to the light source vec3 lightDir = normalize(lightDirection); // Compute the amount of light that is scattered in this direction float scattering = dot(normal, lightDir); // Compute the color of the atmosphere at this position vec3 color = texture2D(earthTexture, vUv).rgb * scattering; // Output the color gl_FragColor = vec4(color, 1.0); }
This code adds the mesh to the scene. The mesh will now be rendered using the atmospheric scattering fragment shader. The result will be a semi-transparent atmosphere that surrounds the Earth.
The above is the detailed content of How can I simulate a realistic atmosphere around a 3D Earth model using Three.js and a custom fragment shader?. For more information, please follow other related articles on the PHP Chinese website!

Yes, the engine core of JavaScript is written in C. 1) The C language provides efficient performance and underlying control, which is suitable for the development of JavaScript engine. 2) Taking the V8 engine as an example, its core is written in C, combining the efficiency and object-oriented characteristics of C. 3) The working principle of the JavaScript engine includes parsing, compiling and execution, and the C language plays a key role in these processes.

JavaScript is at the heart of modern websites because it enhances the interactivity and dynamicity of web pages. 1) It allows to change content without refreshing the page, 2) manipulate web pages through DOMAPI, 3) support complex interactive effects such as animation and drag-and-drop, 4) optimize performance and best practices to improve user experience.

C and JavaScript achieve interoperability through WebAssembly. 1) C code is compiled into WebAssembly module and introduced into JavaScript environment to enhance computing power. 2) In game development, C handles physics engines and graphics rendering, and JavaScript is responsible for game logic and user interface.

JavaScript is widely used in websites, mobile applications, desktop applications and server-side programming. 1) In website development, JavaScript operates DOM together with HTML and CSS to achieve dynamic effects and supports frameworks such as jQuery and React. 2) Through ReactNative and Ionic, JavaScript is used to develop cross-platform mobile applications. 3) The Electron framework enables JavaScript to build desktop applications. 4) Node.js allows JavaScript to run on the server side and supports high concurrent requests.

Python is more suitable for data science and automation, while JavaScript is more suitable for front-end and full-stack development. 1. Python performs well in data science and machine learning, using libraries such as NumPy and Pandas for data processing and modeling. 2. Python is concise and efficient in automation and scripting. 3. JavaScript is indispensable in front-end development and is used to build dynamic web pages and single-page applications. 4. JavaScript plays a role in back-end development through Node.js and supports full-stack development.

C and C play a vital role in the JavaScript engine, mainly used to implement interpreters and JIT compilers. 1) C is used to parse JavaScript source code and generate an abstract syntax tree. 2) C is responsible for generating and executing bytecode. 3) C implements the JIT compiler, optimizes and compiles hot-spot code at runtime, and significantly improves the execution efficiency of JavaScript.

JavaScript's application in the real world includes front-end and back-end development. 1) Display front-end applications by building a TODO list application, involving DOM operations and event processing. 2) Build RESTfulAPI through Node.js and Express to demonstrate back-end applications.

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Dreamweaver CS6
Visual web development tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Linux new version
SublimeText3 Linux latest version

SublimeText3 Mac version
God-level code editing software (SublimeText3)
